3D-Printable Concrete for Energy-Efficient Buildings

被引:9
|
作者
Samudrala, Manideep [1 ]
Mujeeb, Syed [1 ]
Lanjewar, Bhagyashri A. A. [1 ]
Chippagiri, Ravijanya [1 ]
Kamath, Muralidhar [2 ]
Ralegaonkar, Rahul V. V. [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Civil Engn, Nagpur 440010, India
[2] Apple Chem India Pvt Ltd, Tech Serv, Nagpur 440022, India
关键词
3DCP; energy efficiency; life cycle assessment; industrial byproducts; BLAST-FURNACE SLAG; 3D PRINTED CONCRETE; FLY-ASH; CEMENTITIOUS MATERIALS; HARDENED PROPERTIES; THERMAL-CONDUCTIVITY; FRESH PROPERTIES; SILICA FUME; CONSTRUCTION; PERFORMANCE;
D O I
10.3390/en16104234
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Rapid construction with an energy-efficient approach is a major challenge in the present construction industry. Cement, a carbon-intensive material, is mainly used in the construction industry and hence increases the sector's carbon footprint on the environment. The current review focuses on the study of 3D concrete printing (3DCP), in which cement is partially replaced with industrial byproducts such as ground granulated blast furnace slag (GGBS), fly ash, and silica fume. Walling material is primarily targeted in 3DCP. There is a need to include energy efficiency to achieve a thermally comfortable environment. The life cycle assessment (LCA) of concrete is studied to discover the potential conflicts affecting the environment. The sand-to-binder ratio is pivotal in determining the performance of concrete. The content of the supplements is decided based on this factor. The rheological, physical, and mechanical properties of 3DCP are studied further and analysed. GGBS demonstrates better performance in the compressive and flexure strength of concrete. The usage of fly ash and silica fume has reduced the thermal conductivity of the material, whereas GGBS has increased it. An LCA study shows that 3DCP can be made sustainable with the use of these supplementary cementitious materials.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels
    Leppiniemi, Jenni
    Lahtinen, Panu
    Paajanen, Antti
    Mahlberg, Riitta
    Metsa-Kortelainen, Sini
    Pinornaa, Tatu
    Pajari, Heikki
    Vikholm-Lundin, Inger
    Pursula, Pekka
    Hytonen, Vesa P.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21959 - 21970
  • [32] 3D-Printable Sustainable Bioplastics from Gluten and Keratin
    Alshehhi, Jumana Rashid Mohammed Haroub
    Wanasingha, Nisal
    Balu, Rajkamal
    Mata, Jitendra
    Shah, Kalpit
    Dutta, Naba K.
    Choudhury, Namita Roy
    GELS, 2024, 10 (02)
  • [33] Open-Source 3D-Printable Optics Equipment
    Zhang, Chenlong
    Anzalone, Nicholas C.
    Faria, Rodrigo P.
    Pearce, Joshua M.
    PLOS ONE, 2013, 8 (03):
  • [34] Progress on a Novel, 3D-Printable Heart Valve Prosthesis
    Schroeter, Filip
    Kuehnel, Ralf-Uwe
    Hartrumpf, Martin
    Ostovar, Roya
    Albes, Johannes Maximilian
    POLYMERS, 2023, 15 (22)
  • [35] Design Method of 3D-Printable Ergonomically Personalized Stabilizer
    Kawamura, Ryota
    Takazawa, Kazuki
    Yamamoto, Kenta
    Ochiai, Yoichi
    DIGITAL HUMAN MODELING AND APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS AND RISK MANAGEMENT. HUMAN BODY AND MOTION, DHM 2019, PT I, 2019, 11581 : 71 - 87
  • [36] Thermoplastic electroactive gels for 3D-printable artificial muscles
    Helps, Tim
    Taghavi, Majid
    Rossiter, Jonathan
    SMART MATERIALS AND STRUCTURES, 2019, 28 (08)
  • [37] 3D-printable Kresling-embedded honeycomb metamaterials with optimized energy absorption capability
    Yang, Haiying
    Liu, Yuheng
    Lu, Haibao
    Tao, Ran
    Wei, Xueyong
    Fu, Yong-Qing
    SMART MATERIALS AND STRUCTURES, 2024, 33 (12)
  • [38] Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties
    Harish, Akhil
    Alsaleh, Naser A.
    Ahmadein, Mahmoud
    Elfar, Abdullah A.
    Djuansjah, Joy
    Hassanin, Hany
    El-Sayed, Mahmoud Ahmed
    Essa, Khamis
    POLYMERS, 2024, 16 (06)
  • [39] From energy-efficient buildings to energy-efficient users and back: ergonomic issues in intelligent buildings design
    Duca, Gabriella
    INTELLIGENT BUILDINGS INTERNATIONAL, 2014, 6 (04) : 215 - 223
  • [40] 3D-printable lightweight foamed concrete and comparison with classical foamed concrete in terms of fresh state properties and mechanical strength
    Falliano, Devid
    De Domenico, Dario
    Ricciardi, Giuseppe
    Gugliandolo, Ernesto
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 254