3D-Printable Sustainable Bioplastics from Gluten and Keratin

被引:8
|
作者
Alshehhi, Jumana Rashid Mohammed Haroub [1 ]
Wanasingha, Nisal [1 ]
Balu, Rajkamal [1 ]
Mata, Jitendra [2 ,3 ]
Shah, Kalpit [1 ]
Dutta, Naba K. [1 ]
Choudhury, Namita Roy [1 ]
机构
[1] RMIT Univ, STEM Coll, Sch Engn, Chem & Environm Engn, Melbourne, Vic 3000, Australia
[2] Australian Nucl Sci & Technol Org ANSTO, Australian Ctr Neutron Scattering ACNS, Lucas Heights, NSW 2232, Australia
[3] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
film; protein; gluten; keratin; neutron scattering; 3D printing; PROTEIN; HYDROGELS; TEMPERATURE; TRANSITION; FLOUR;
D O I
10.3390/gels10020136
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol-water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) beta-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 mu m) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from similar to 179.7 degrees C to similar to 173.5 degrees C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Reprogrammable, Sustainable, and 3D-Printable Cellulose Hydroplastic
    Koh, J. Justin
    Koh, Xue Qi
    Chee, Jing Yee
    Chakraborty, Souvik
    Tee, Si Yin
    Zhang, Danwei
    Lai, Szu Cheng
    Yeo, Jayven Chee Chuan
    Soh, Jia Wen Jaslin
    Li, Peiyu
    Tan, Swee Ching
    Thitsartarn, Warintorn
    He, Chaobin
    ADVANCED SCIENCE, 2024, 11 (29)
  • [2] 3D-printable artificial marble
    Slavcheva, G. S.
    Britvina, E. A.
    MAGAZINE OF CIVIL ENGINEERING, 2022, 111 (03):
  • [3] Tunable scaffolds from novel, 3D-printable biomaterials
    Guvendiren, Murat
    Dube, Koustubh
    Molde, Joseph
    Kohn, Joachim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] 3D-Printable Antimicrobial Composite Resins
    Yue, Jun
    Zhao, Pei
    Gerasimov, Jennifer Y.
    van de Lagemaat, Marieke
    Grotenhuis, Arjen
    Rustema-Abbing, Minie
    van der Mei, Henny C.
    Busscher, Henk J.
    Herrmann, Andreas
    Ren, Yijin
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) : 6756 - 6767
  • [5] Halloysite reinforced 3D-printable geopolymers
    Ranjbar, Navid
    Kuenzel, Carsten
    Gundlach, Carsten
    Kempen, Paul
    Mehrali, Mehdi
    CEMENT & CONCRETE COMPOSITES, 2023, 136
  • [6] A 3D-printable modular robotic gripper
    Matos, Pedro
    Neto, Pedro
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (1-2): : 845 - 855
  • [7] Electrostatic Dissipation in 3D-Printable Silicone
    Armas, Jeremy A.
    Ford, Michael J.
    Foster, Kenton P.
    Hall, Terence
    Loeb, Colin K.
    Schmidt, Spencer
    Williams, Stanley F.
    Baron, Kathlyn L.
    Perez, Lemuel X. Perez
    Xie, Fangyou
    Bryson, Taylor M.
    Lenhardt, Jeremy M.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 56041 - 56050
  • [8] 3D-printable colloidal photonic crystals
    Liao, Junlong
    Ye, Changqing
    Guo, Jie
    Garciamendez-Mijares, Carlos Ezio
    Agrawal, Prajwal
    Kuang, Xiao
    Japo, Julia Olga
    Wang, Zixuan
    Mu, Xuan
    Li, Wanlu
    Ching, Terry
    Mille, Luis Santiago
    Zhu, Cun
    Zhang, Xingcai
    Gu, Zhongze
    Zhang, Yu Shrike
    MATERIALS TODAY, 2022, 56 : 29 - 41
  • [9] A 3D-printable modular robotic gripper
    Pedro Matos
    Pedro Neto
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 845 - 855
  • [10] 3D-printable colloidal photonic crystals
    Liao, Junlong
    Ye, Changqing
    Guo, Jie
    Garciamendez-Mijares, Carlos Ezio
    Agrawal, Prajwal
    Kuang, Xiao
    Japo, Julia Olga
    Wang, Zixuan
    Mu, Xuan
    Li, Wanlu
    Ching, Terry
    Mille, Luis Santiago
    Zhu, Cun
    Zhang, Xingcai
    Gu, Zhongze
    Zhang, Yu Shrike
    MATERIALS TODAY, 2022, 56 : 29 - 41