A 3D-printable modular robotic gripper

被引:4
|
作者
Matos, Pedro [1 ]
Neto, Pedro [1 ]
机构
[1] Univ Coimbra, Dept Mech Engn, CEMMPRE, P-3030788 Coimbra, Portugal
关键词
Gripper; Robotics; 3D-printing; Modular; DESIGN;
D O I
10.1007/s00170-023-11114-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robotic systems are key in industry 4.0 context. While there are many robot models available in the market, the number of grippers with sensing capabilities at an affordable cost is reduced. Traditional robot grippers are targeted to perform specific tasks, with unchangeable configurations and limited ability to adapt to different working scenarios. In this paper, we present the design and fabrication of a modular and low-cost 3D-printable robotic gripper to grasp and hold different objects. It is a parallel gripper with a two-finger two-motor configuration. The power transmission was conceived to maximize the grasping force while keeping the gripper compactness. The gripper structure is 3D-printed and includes three different types of fingers: (1) hard fingers, (2) flexible fingers, and (3) soft fingers. Objects to grasp are recognized using an embedded camera with integrated computer vision processing. The gripper components are integrated into a common network for monitoring and control. Experimental tests were conducted with objects from the YCB dataset featuring different sizes, weights and shapes. Results indicate that it can grasp different objects, reaching a maximum force of 76 N per finger and a positioning accuracy in the millimetres range.
引用
收藏
页码:845 / 855
页数:11
相关论文
共 50 条
  • [1] A 3D-printable modular robotic gripper
    Pedro Matos
    Pedro Neto
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 845 - 855
  • [2] A 3D-Printable Robotic Gripper Based on Thick Panel Origami
    Liu, Chenying
    Maiolino, Perla
    You, Zhong
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [3] Interactive Design of 3D-Printable Robotic Creatures
    Megaro, Vittorio
    Thomaszewski, Bernhard
    Nitri, Maurizio
    Hilliges, Otmar
    Gross, Markus
    Coros, Stelian
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [4] A 3D-Printable, Modular Absorption Spectrophotometer and Fluorimeter for use in Education
    Cokley, James A.
    Jones, Katie R.
    Delp, Noah M.
    Rogers, Kristen R.
    Davis, Bradley W.
    JOURNAL OF CHEMICAL EDUCATION, 2024, : 2665 - 2671
  • [5] 3D-Printable and open-source modular smartphone visible spectrophotometer
    Winters, Brandon J.
    Banfield, Nick
    Dixon, Cassandra
    Swensen, Anna
    Holman, Dakota
    Fillbrown, Braxton
    HARDWAREX, 2021, 10
  • [6] 3D-printable artificial marble
    Slavcheva, G. S.
    Britvina, E. A.
    MAGAZINE OF CIVIL ENGINEERING, 2022, 111 (03):
  • [7] 3D-Printable Antimicrobial Composite Resins
    Yue, Jun
    Zhao, Pei
    Gerasimov, Jennifer Y.
    van de Lagemaat, Marieke
    Grotenhuis, Arjen
    Rustema-Abbing, Minie
    van der Mei, Henny C.
    Busscher, Henk J.
    Herrmann, Andreas
    Ren, Yijin
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) : 6756 - 6767
  • [8] Halloysite reinforced 3D-printable geopolymers
    Ranjbar, Navid
    Kuenzel, Carsten
    Gundlach, Carsten
    Kempen, Paul
    Mehrali, Mehdi
    CEMENT & CONCRETE COMPOSITES, 2023, 136
  • [9] Electrostatic Dissipation in 3D-Printable Silicone
    Armas, Jeremy A.
    Ford, Michael J.
    Foster, Kenton P.
    Hall, Terence
    Loeb, Colin K.
    Schmidt, Spencer
    Williams, Stanley F.
    Baron, Kathlyn L.
    Perez, Lemuel X. Perez
    Xie, Fangyou
    Bryson, Taylor M.
    Lenhardt, Jeremy M.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 56041 - 56050
  • [10] 3D-printable colloidal photonic crystals
    Liao, Junlong
    Ye, Changqing
    Guo, Jie
    Garciamendez-Mijares, Carlos Ezio
    Agrawal, Prajwal
    Kuang, Xiao
    Japo, Julia Olga
    Wang, Zixuan
    Mu, Xuan
    Li, Wanlu
    Ching, Terry
    Mille, Luis Santiago
    Zhu, Cun
    Zhang, Xingcai
    Gu, Zhongze
    Zhang, Yu Shrike
    MATERIALS TODAY, 2022, 56 : 29 - 41