Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings

被引:8
|
作者
Khan, Muhammad Bilal [1 ]
Othman, Hakeem A. A. [2 ]
Voskoglou, Michael Gr. [3 ]
Abdullah, Lazim [4 ]
Alzubaidi, Alia M. M. [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[2] Umm Al Qura Univ, AL Qunfudhah Univ Coll, Dept Math, Mecca 24382, Saudi Arabia
[3] Grad TEI Western Greece, Math Sci, Patras 26334, Greece
[4] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Management Sci Res Grp, Terengganu 21030, Malaysia
关键词
fuzzy number valued mapping; fuzzy Aumann integral; up and down convex fuzzy number valued mapping; Hermite-Hadamard inequality; Hermite-Hadamard-Fejer inequality; HARMONIC CONVEXITIES; INTERVAL; BOUNDS; CONCAVITY; OPTIMIZATION; EXISTENCE; TERMS;
D O I
10.3390/math11030550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The topic of convex and nonconvex mapping has many applications in engineering and applied mathematics. The Aumann and fuzzy Aumann integrals are the most significant interval and fuzzy operators that allow the classical theory of integrals to be generalized. This paper considers the well-known fuzzy Hermite-Hadamard (HH) type and associated inequalities. With the help of fuzzy Aumann integrals and the newly introduced fuzzy number valued up and down convexity (UD-convexity), we increase this mileage even further. Additionally, with the help of definitions of lower UD-concave (lower UD-concave) and upper UD-convex (concave) fuzzy number valued mappings (FNVMs), we have gathered a sizable collection of both well-known and new extraordinary cases that act as applications of the main conclusions. We also offer a few examples of fuzzy number valued UD-convexity to further demonstrate the validity of the fuzzy inclusion relations presented in this study.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Rakhmangulov, Aleksandr
    Soliman, Mohamed S.
    Alzubaidi, Alia M.
    [J]. MATHEMATICS, 2023, 11 (06)
  • [2] Up and Down h-Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Soliman, Mohamed S.
    [J]. AXIOMS, 2023, 12 (01)
  • [3] Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation
    Khan, Muhammad Bilal
    Rahman, Aziz Ur
    Maash, Abdulwadoud A.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AXIOMS, 2023, 12 (04)
  • [4] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Muhammad Bilal Khan
    Muhammad Aslam Noor
    Pshtiwan Othman Mohammed
    Juan L. G. Guirao
    Khalida Inayat Noor
    [J]. International Journal of Computational Intelligence Systems, 14
  • [5] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Mohammed, Pshtiwan Othman
    Guirao, Juan L. G.
    Noor, Khalida Inayat
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [6] On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Santos-Garcia, Gustavo
    Saeed, Tareq
    Soliman, Mohamed S.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 169
  • [7] Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions
    Vivas-Cortez, Miguel
    Ali, Rana Safdar
    Saif, Humira
    Jeelani, Mdi Begum
    Rahman, Gauhar
    Elmasry, Yasser
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [8] Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann-Liouville FractionalIntegral Inequalities
    Khan, Muhammad Bilal
    Rakhmangulov, Aleksandr
    Aloraini, Najla
    Noor, Muhammad Aslam
    Soliman, Mohamed S.
    [J]. MATHEMATICS, 2023, 11 (03)
  • [9] Some Certain Fuzzy Fractional Inequalities for Up and Down PLANCK CONSTANT OVER TWO PI-Pre-Invex via Fuzzy-Number Valued Mappings
    Khan, Muhammad Bilal
    Catas, Adriana
    Aloraini, Najla
    Soliman, Mohamed S.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [10] New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman's Integral Inequalities
    Alreshidi, Nasser Aedh
    Khan, Muhammad Bilal
    Breaz, Daniel
    Cotirla, Luminita-Ioana
    [J]. SYMMETRY-BASEL, 2023, 15 (12):