Up and Down h-Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities

被引:8
|
作者
Khan, Muhammad Bilal [1 ]
Zaini, Hatim Ghazi [2 ]
Macias-Diaz, Jorge E. [3 ,4 ]
Soliman, Mohamed S. [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[2] Taif Univ, Coll Comp & Informat Technol, Dept Comp Engn, POB 11099, Taif 21944, Saudi Arabia
[3] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ave Univ 940,Ciudad Univ, Aguascalientes 20131, Mexico
[4] Tallinn Univ, Sch Digital Technol, Dept Math, Narva Rd 25, EE-10120 Tallinn, Estonia
[5] Taif Univ, Coll Engn, Dept Elect Engn, POB 11099, Taif 21944, Saudi Arabia
关键词
up and down h-pre-invex fuzzy-number valued mappings; fuzzy Riemann integral operators; Hermite-Hadamard Fejer type inequalities; Hermite-Hadamard Pachpatte type inequalities; HADAMARD TYPE INEQUALITIES; INTERVAL;
D O I
10.3390/axioms12010001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of the current paper is to incorporate the new class and concepts of convexity and Hermite-Hadamard inequality with the fuzzy Riemann integral operators because almost all classical single-valued and interval-valued convex functions are special cases of fuzzy-number valued convex mappings. Therefore, a new class of nonconvex mapping in the fuzzy environment has been defined; up and down h-pre-invex fuzzy-number valued mappings (U.D h-pre-invex F-N center dot V center dot Ms). With the help of this newly defined class, some new versions of Hermite-Hadamard (HH) type inequalities have been also presented. Moreover, some related inequalities such as HH Fejer- and Pachpatte-type inequalities for U center dot D h-pre-invex F-N center dot V center dot Ms are also introduced. Some exceptional cases have been discussed, which can be seen as applications of the main results. We have provided some nontrivial examples. Finally, we also discuss some future scopes.
引用
收藏
页数:22
相关论文
共 34 条
  • [1] Some Certain Fuzzy Fractional Inequalities for Up and Down PLANCK CONSTANT OVER TWO PI-Pre-Invex via Fuzzy-Number Valued Mappings
    Khan, Muhammad Bilal
    Catas, Adriana
    Aloraini, Najla
    Soliman, Mohamed S.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [2] New Class Up and Down ?-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Santos-Garcia, Gustavo
    Noor, Muhammad Aslam
    Soliman, Mohamed S. S.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [3] New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals
    Khan, Muhammad Bilal
    Santos-Garcia, Gustavo
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [4] Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings
    Khan, Muhammad Bilal
    Othman, Hakeem A. A.
    Voskoglou, Michael Gr.
    Abdullah, Lazim
    Alzubaidi, Alia M. M.
    [J]. MATHEMATICS, 2023, 11 (03)
  • [5] Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities
    Khan, Muhammad Bilal
    Santos-Garcia, Gustavo
    Noor, Muhammad Aslam
    Soliman, Mohamed S.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 164
  • [6] On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Santos-Garcia, Gustavo
    Saeed, Tareq
    Soliman, Mohamed S.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 169
  • [7] Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation
    Khan, Muhammad Bilal
    Rahman, Aziz Ur
    Maash, Abdulwadoud A.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AXIOMS, 2023, 12 (04)
  • [8] Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Rakhmangulov, Aleksandr
    Soliman, Mohamed S.
    Alzubaidi, Alia M.
    [J]. MATHEMATICS, 2023, 11 (06)
  • [9] Some new concepts in fuzzy calculus for up and down A-convex fuzzy- number valued mappings and related inequalities
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Santos-Garcia, Gustavo
    Noor, Muhammad Aslam
    Soliman, Mohamed S.
    [J]. AIMS MATHEMATICS, 2023, 8 (03): : 6777 - 6803
  • [10] Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities
    Khan, Muhammad Bilal
    Althobaiti, Ali
    Lee, Cheng-Chi
    Soliman, Mohamed S.
    Li, Chun-Ta
    [J]. MATHEMATICS, 2023, 11 (13)