Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions

被引:2
|
作者
Vivas-Cortez, Miguel [1 ]
Ali, Rana Safdar [2 ]
Saif, Humira [2 ]
Jeelani, Mdi Begum [3 ]
Rahman, Gauhar [4 ]
Elmasry, Yasser [5 ]
机构
[1] Pontificia Univ Catolica Ecuador, Fac Ciencias Exactas & Nat, Escuela Ciencias Fis & Matemat, Av 12 Octubre 1076 Apartado, Quito 17012184, Ecuador
[2] Univ Lahore, Dept Math, Lahore 54000, Pakistan
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13314, Saudi Arabia
[4] Hazara Univ, Dept Math & Stat, Mansehra 21300, Pakistan
[5] King Khalid Univ, Fac Sci, Dept Math, POB 9004, Abha 61466, Saudi Arabia
关键词
convex (FIV) function; fuzzy fractional integral operator; pre-invex FIV function; Hermite-Hadamard (H-H)-type inequality; trapezoid-type inequality; extended generalized Bessel-Maitland function; DIFFERENTIABILITY;
D O I
10.3390/fractalfract7080580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fuzzy-interval valued functions (FIVFs) are the generalization of interval valued and real valued functions, which have a great contribution to resolve the problems arising in the theory of interval analysis. In this article, we elaborate the convexities and pre-invexities in aspects of FIVFs and investigate the existence of fuzzy fractional integral operators (FFIOs) having a generalized Bessel-Maitland function as their kernel. Using the class of convexities and pre-invexities FIVFs, we prove some Hermite-Hadamard (H-H) and trapezoid-type inequalities by the implementation of FFIOs. Additionally, we obtain other well known inequalities having significant behavior in the field of fuzzy interval analysis.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Some integral inequalities for fuzzy-interval-valued functions
    Costa, T. M.
    Roman-Flores, H.
    [J]. INFORMATION SCIENCES, 2017, 420 : 110 - 125
  • [2] Some Fuzzy Riemann-Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [3] Harmonically Convex Fuzzy-Interval-Valued Functions and Fuzzy-Interval Riemann-Liouville Fractional Integral Inequalities
    Sana, Gul
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Mohammed, Pshtiwan Othman
    Chu, Yu-Ming
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1809 - 1822
  • [4] Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions
    Khan, Muhammad Bilal
    Mohammed, Pshtiwan Othman
    Noor, Muhammad Aslam
    Abualnaja, Khadijah M.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6552 - 6580
  • [5] Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions
    Muhammad Bilal Khan
    Hatim Ghazi Zaini
    Gustavo Santos-García
    Pshtiwan Othman Mohammed
    Mohamed S. Soliman
    [J]. International Journal of Computational Intelligence Systems, 15
  • [6] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Muhammad Bilal Khan
    Muhammad Aslam Noor
    Pshtiwan Othman Mohammed
    Juan L. G. Guirao
    Khalida Inayat Noor
    [J]. International Journal of Computational Intelligence Systems, 14
  • [7] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    Costa, T. M.
    Silva, G. N.
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [8] Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Mohammed, Pshtiwan Othman
    Guirao, Juan L. G.
    Noor, Khalida Inayat
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [9] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    T. M. Costa
    G. N. Silva
    Y. Chalco-Cano
    H. Román-Flores
    [J]. Computational and Applied Mathematics, 2019, 38
  • [10] Certain Fractional Proportional Integral Inequalities via Convex Functions
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Ullah, Samee
    [J]. MATHEMATICS, 2020, 8 (02)