Around metric coincidence point theory

被引:3
|
作者
Rus, Joan A. [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Metric space; singlevalued and multivalued mapping; coincidence point metric condition; fixed point metric condition; covering mapping; coincident point displacement; fixed point displacement; iterative approximation of coincidence point; iterative approximation of fixed point; weakly Picard mapping; pre-weakly Picard mapping; Ulam-Hyers stability; well-posedness of coincidence point problem; SET-VALUED MAPPINGS; COVERING MAPPINGS; WELL-POSEDNESS; REGULARITY; OPENNESS;
D O I
10.24193/subbmath.2023.2.18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d) be a complete metric space, (Y, rho) be a metric space and f, g : X-+ Y be two mappings. The problem is to give metric conditions which imply that, C(f, g) := {x E X | f (x) = g(x)} =6 0. In this paper we give an abstract coincidence point result with respect to which some results such as of Peetre-Rus (I.A. Rus, Teoria punctului fix in analiza funct,ionala, Babe,s-Bolyai Univ., Cluj-Napoca, 1973), A. Buica (A. Buica, Principii de coincident,a ,si aplicat,ii, Presa Univ. Clujeana, Cluj-Napoca, 2001) and A.V. Arutyunov (A.V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76(2007), no.2, 665-668) appear as corollaries. In the case of multivalued mappings our result generalizes some results given by A.V. Arutyunov and by A. Petru,sel (A. Petru,sel, A generalization of Peetre-Rus theorem, Studia Univ. Babe,s-Bolyai Math., 35(1990), 81-85). The impact on metric fixed point theory is also studied.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 50 条
  • [31] Some aspects of Reidemeister fixed point theory, equivariant fixed point theory and coincidence theory
    L. D. Borsari
    F. Cardona
    D. L. Gonçalves
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 508 - 538
  • [32] COINCIDENCE POINT THEOREM ASYMPTOTIC CONTRACTION MAPPING IN FUZZY METRIC SPACE
    Choudhury, Binayak S.
    Das, Krishnapada
    Das, Pradyut
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2010, 1 (03): : 167 - 173
  • [33] Coupled coincidence point theorems for contractions in generalized fuzzy metric spaces
    Xin-Qi Hu
    Qing Luo
    Fixed Point Theory and Applications, 2012
  • [34] Coupled coincidence point theorems for contractions in generalized fuzzy metric spaces
    Hu, Xin-Qi
    Luo, Qing
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [35] Optimal Approximate Solution of Coincidence Point Equations in Fuzzy Metric Spaces
    Saleem, Naeem
    Abbas, Mujahid
    De la Sen, Manuel
    MATHEMATICS, 2019, 7 (04):
  • [36] Some Coincidence Point Theorems for Nonlinear Contraction in Ordered Metric Spaces
    Wasfi Shatanawi
    Zead Mustafa
    Nedal Tahat
    Fixed Point Theory and Applications, 2011
  • [37] Coincidence point theorems in generating spaces of quasi-metric family
    Jung, JS
    Cho, YJ
    Kang, SM
    Lee, BS
    Choi, YK
    FUZZY SETS AND SYSTEMS, 2000, 116 (03) : 471 - 479
  • [38] SOME COINCIDENCE AND COMMON FIXED POINT THEOREMS IN CONE METRIC SPACES
    Malhotra, S. K.
    Shukla, S.
    Sen, R.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (02): : 64 - 71
  • [39] Kantorovich’s Fixed Point Theorem in Metric Spaces and Coincidence Points
    A. V. Arutyunov
    E. S. Zhukovskiy
    S. E. Zhukovskiy
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : 60 - 73
  • [40] Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 304 (01) : 60 - 73