Around metric coincidence point theory

被引:3
|
作者
Rus, Joan A. [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Metric space; singlevalued and multivalued mapping; coincidence point metric condition; fixed point metric condition; covering mapping; coincident point displacement; fixed point displacement; iterative approximation of coincidence point; iterative approximation of fixed point; weakly Picard mapping; pre-weakly Picard mapping; Ulam-Hyers stability; well-posedness of coincidence point problem; SET-VALUED MAPPINGS; COVERING MAPPINGS; WELL-POSEDNESS; REGULARITY; OPENNESS;
D O I
10.24193/subbmath.2023.2.18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d) be a complete metric space, (Y, rho) be a metric space and f, g : X-+ Y be two mappings. The problem is to give metric conditions which imply that, C(f, g) := {x E X | f (x) = g(x)} =6 0. In this paper we give an abstract coincidence point result with respect to which some results such as of Peetre-Rus (I.A. Rus, Teoria punctului fix in analiza funct,ionala, Babe,s-Bolyai Univ., Cluj-Napoca, 1973), A. Buica (A. Buica, Principii de coincident,a ,si aplicat,ii, Presa Univ. Clujeana, Cluj-Napoca, 2001) and A.V. Arutyunov (A.V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76(2007), no.2, 665-668) appear as corollaries. In the case of multivalued mappings our result generalizes some results given by A.V. Arutyunov and by A. Petru,sel (A. Petru,sel, A generalization of Peetre-Rus theorem, Studia Univ. Babe,s-Bolyai Math., 35(1990), 81-85). The impact on metric fixed point theory is also studied.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 50 条
  • [21] Tripled coincidence and fixed point results in partial metric spaces
    Tydi, Hassen
    Abbas, Mujahid
    APPLIED GENERAL TOPOLOGY, 2012, 13 (02): : 193 - 206
  • [22] A COUPLED COINCIDENCE POINT THEOREM IN PARTIALLY ORDERED METRIC SPACES
    Can, Nguyen V.
    Berinde, Vasile
    Luong, Nguyen V.
    Thuan, Nguyen X.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (01): : 103 - 119
  • [23] Coincidence Point Results in Ordered Metric Spaces and its Application
    Rao, N. Seshagiri
    Kalyani, K.
    Prasad, K.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (01): : 33 - 43
  • [24] A Generalized Neutrosophic Metric Space and Coupled Coincidence Point Results
    Mookiah S.
    Mathuraiveeran J.
    Neutrosophic Sets and Systems, 2021, 42 : 253 - 269
  • [25] Coincidence point theorems and minimization theorems in fuzzy metric spaces
    Chang, SS
    Cho, YJ
    Lee, BS
    Jung, JS
    Kang, SM
    FUZZY SETS AND SYSTEMS, 1997, 88 (01) : 119 - 127
  • [26] Coincidence point of isotone mappings in partially ordered metric spaces
    Beg I.
    Laha A.K.
    Saha M.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2): : 273 - 282
  • [27] On Approximate Coincidence Point Properties and Their Applications to Fixed Point Theory
    Du, Wei-Shih
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [28] A note on noncompact collectively coincidence point theory
    Donal O’Regan
    Periodica Mathematica Hungarica, 2023, 87 : 293 - 302
  • [29] Some aspects of Reidemeister fixed point theory, equivariant fixed point theory and coincidence theory
    Borsari, L. D.
    Cardona, F.
    Goncalves, D. L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 508 - 538
  • [30] A note on noncompact collectively coincidence point theory
    O'Regan, Donal
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (02) : 293 - 302