Around metric coincidence point theory

被引:3
|
作者
Rus, Joan A. [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Metric space; singlevalued and multivalued mapping; coincidence point metric condition; fixed point metric condition; covering mapping; coincident point displacement; fixed point displacement; iterative approximation of coincidence point; iterative approximation of fixed point; weakly Picard mapping; pre-weakly Picard mapping; Ulam-Hyers stability; well-posedness of coincidence point problem; SET-VALUED MAPPINGS; COVERING MAPPINGS; WELL-POSEDNESS; REGULARITY; OPENNESS;
D O I
10.24193/subbmath.2023.2.18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d) be a complete metric space, (Y, rho) be a metric space and f, g : X-+ Y be two mappings. The problem is to give metric conditions which imply that, C(f, g) := {x E X | f (x) = g(x)} =6 0. In this paper we give an abstract coincidence point result with respect to which some results such as of Peetre-Rus (I.A. Rus, Teoria punctului fix in analiza funct,ionala, Babe,s-Bolyai Univ., Cluj-Napoca, 1973), A. Buica (A. Buica, Principii de coincident,a ,si aplicat,ii, Presa Univ. Clujeana, Cluj-Napoca, 2001) and A.V. Arutyunov (A.V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76(2007), no.2, 665-668) appear as corollaries. In the case of multivalued mappings our result generalizes some results given by A.V. Arutyunov and by A. Petru,sel (A. Petru,sel, A generalization of Peetre-Rus theorem, Studia Univ. Babe,s-Bolyai Math., 35(1990), 81-85). The impact on metric fixed point theory is also studied.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 50 条
  • [1] A new technique for coincidence point theory in metric spaces endowed with graph
    Chaichuay, Chinda
    Kangtunyakarn, Atid
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (08) : 1277 - 1293
  • [2] Coupled coincidence point in ordered cone metric spaces with examples in game theory
    Sadigh, Alireza Naeimi
    Ghods, Samaneh
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 183 - 194
  • [3] On the Coincidence Point in Ordered Partial Metric Spaces
    Gharibi, R.
    Jahedi, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (02) : 1 - 14
  • [4] NEW EXISTENCE THEOREMS FOR APPROXIMATE COINCIDENCE POINT PROPERTY AND APPROXIMATE FIXED POINT PROPERTY WITH APPLICATIONS TO METRIC FIXED POINT THEORY
    Du, Wei-Shih
    He, Zhenhua
    Chen, Yi-Liang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (03) : 459 - 474
  • [5] Coupled coincidence point theorems in ordered metric spaces
    Choudhury B.S.
    Metiya N.
    Kundu A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (1) : 1 - 16
  • [6] Coincidence point theorems in probabilistic and fuzzy metric spaces
    Liu, Yicheng
    Li, Zhixiang
    FUZZY SETS AND SYSTEMS, 2007, 158 (01) : 58 - 70
  • [7] Coincidence point theorems in some generalized metric spaces
    Filip, Alexandru-Darius
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 925 - 930
  • [8] TRIPLED COINCIDENCE POINT THEOREM IN FUZZY METRIC SPACES
    Gupta, Animesh
    Yadava, R. N.
    Shrivastava, Rajesh
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 8 (04): : 309 - 325
  • [9] MULTIVALUED COUPLED COINCIDENCE POINT RESULTS IN METRIC SPACES
    Choudhury, Binayak S.
    Metiya, Nikhilesh
    Kundu, Sunirmal
    MATEMATICKI VESNIK, 2023, 75 (04): : 286 - 295
  • [10] Some coincidence point results in cone metric spaces
    Shatanawi, Wasfi
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (7-8) : 2023 - 2028