Obstacle avoidance for a robotic navigation aid using Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA)

被引:4
|
作者
Mohd Romlay, Muhammad Rabani [1 ]
Mohd Ibrahim, Azhar [1 ]
Toha, Siti Fauziah [1 ]
De Wilde, Philippe [2 ]
Venkat, Ibrahim [3 ]
Ahmad, Muhammad Syahmi [1 ]
机构
[1] Int Islamic Univ Malaysia IIUM, Dept Mechatron Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia
[2] Univ Kent, Div Nat Sci, Canterbury, Kent, England
[3] Univ Teknol Brunei, Sch Comp & Informat, Tungku Highway, Gadong BE-1410, Brunei
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 30期
关键词
Obstacle avoidance; Fuzzy logic; Optimal reciprocal collision avoidance; Navigation aid; Electronic travel aid; ARTIFICIAL-INTELLIGENCE TECHNIQUES; INDOOR; SYSTEM; TEMPERATURES; PREDICTION; HYBRID;
D O I
10.1007/s00521-023-08856-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robotic Navigation Aids (RNAs) assist visually impaired individuals in independent navigation. However, existing research overlooks diverse obstacles and assumes equal responsibility for collision avoidance among intelligent entities. To address this, we propose Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA). Our FLC-ORCA method assigns responsibility for collision avoidance and predicts the velocity of obstacles using a LiDAR-based mobile robot. We conduct experiments in the presence of static, dynamic, and intelligent entities, recording navigation paths, time taken, angle changes, and rerouting occurrences. The results demonstrate that the proposed FLC-ORCA successfully avoids collisions among objects with different collision avoidance protocols and varying liabilities in circumventing obstacles. Comparative analysis reveals that FLC-ORCA outperforms other state-of-the-art methods such as Improved A* and Directional Optimal Reciprocal Collision Avoidance (DORCA). It reduces the overall time taken to complete navigation by 16% and achieves the shortest completion time of 1 min and 38 s, with minimal rerouting (1 occurrence) and the smallest angle change (12 & DEG;). Our proposed FLC-ORCA challenges assumptions of equal responsibility and enables collision avoidance without pairwise manoeuvres. This approach significantly enhances obstacle avoidance, ensuring safer and more efficient robotic navigation for visually impaired individuals.
引用
收藏
页码:22405 / 22429
页数:25
相关论文
共 50 条
  • [21] Autonomous Pedestrian Collision Avoidance Using a Fuzzy Steering Controller
    Fernandez Llorca, David
    Milanes, Vicente
    Parra Alonso, Ignacio
    Gavilan, Miguel
    Garcia Daza, Ivan
    Perez, Joshue
    Angel Sotelo, Miguel
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) : 390 - 401
  • [22] A FUZZY-LOGIC APPROACH FOR SAFETY AND COLLISION-AVOIDANCE IN ROBOTIC SYSTEMS
    GRAHAM, JH
    INTERNATIONAL JOURNAL OF HUMAN FACTORS IN MANUFACTURING, 1995, 5 (04): : 447 - 457
  • [23] Optimal genetic fuzzy obstacle avoidance controller design of autonomous mobile vehicle
    Wu Yihu
    Zhang Yang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1450 - 1453
  • [24] Fuzzy Logic Based Force-Feedback for Obstacle Collision Avoidance of Robot Manipulators
    Wijayasekara, D.
    Manic, M.
    2014 7TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI), 2014, : 76 - 81
  • [25] Speed Control and Obstacle Avoidance of A Hexapod Mobile Robot using Mamdani type Fuzzy Logic Controller
    Najmurrokhman, Asep
    Kusnandar
    Komarudin, Udin
    Sunubroto
    Djamal, Esmeralda Contessa
    Taufik, Fajar
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 199 - 202
  • [26] Application of Fuzzy Logic Controller for Obstacle Detection and Avoidance on Real Autonomous Mobile Robot
    Berisha, Jakup
    Shala, Ahmet
    Bajrami, Xhevahir
    Likaj, Rame
    2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 200 - 205
  • [27] Obstacle avoidance system using a single camera and LMNN fuzzy controller
    Yoo, Sung-Goo
    Chong, Kil-To
    Journal of Institute of Control, Robotics and Systems, 2009, 15 (02) : 192 - 197
  • [28] Robotic vision based obstacle avoidance for navigation of unmanned aerial vehicle using fuzzy rule based optimal deep learning model
    Varma, K. N. V. Suresh
    Kumari, S. Lalitha
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (04) : 2193 - 2212
  • [29] Haptic Guidance in Dynamic Environments Using Optimal Reciprocal Collision Avoidance
    Baldi, Tommaso Lisini
    Scheggi, Stefano
    Aggravi, Marco
    Prattichizzo, Domenico
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (01): : 265 - 272
  • [30] COLLISION-AVOIDANCE BY FUZZY-LOGIC CONTROL FOR AUTOMATED GUIDED VEHICLE NAVIGATION
    LEE, PS
    WANG, LL
    JOURNAL OF ROBOTIC SYSTEMS, 1994, 11 (08): : 743 - 760