A comparison of numerical schemes for the GPU-accelerated simulation of variably-saturated groundwater flow

被引:2
|
作者
Li, Zhi [1 ]
Caviedes-Voullieme, Daniel [2 ,3 ,4 ,5 ]
Oezgen-Xian, Ilhan [6 ,7 ]
Jiang, Simin [1 ]
Zheng, Na [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai, Peoples R China
[2] Forschungszentrum Julich, Julich Supercomp Ctr, Simulat & Data Lab Terr Syst, Julich, Germany
[3] Forschungszentrum Julich, Inst Bio & Geosci Agrosphere IBG 3, Julich, Germany
[4] High Performance Sci Comp Terr Syst, Geoverbund ABC J Julich, Julich, Germany
[5] Forschungszentrum Julich, Ctr Adv Simulat & Analyt CASA, Julich, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geoecol, Braunschweig, Germany
[7] Lawrence Berkeleey Natl Lab, Earth & Environm Sci Area, Berkeley, CA USA
关键词
Richards equation; Predictor-corrector method; Newton-Raphson method; Picard method; GPU computing; SOLVING RICHARDS EQUATION; HYDRAULIC CONDUCTIVITY; NONLINEAR-SYSTEMS; ITERATIVE METHODS; PARALLEL; PICARD; MODEL; ALGORITHM; TRANSPORT; SOLVERS;
D O I
10.1016/j.envsoft.2023.105900
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimal strategy to numerically solve the Richards equation is problem-dependent, especially on GPUs because an efficient numerical scheme on CPU might not scale well on GPU. In this work, four numerical schemes are coded to investigate their parallel performance on CPU and GPU. The results indicate that the scaling of Richards solvers on GPU is affected by the numerical scheme, the linear system solver, the soil constitutive model, the code structure, the problem size and the adaptive time stepping strategies. Compared with CPU, parallel simulations on GPU exhibit stronger variance in the scaling of different code sections. The poorly-scaled components could deteriorate the overall scaling. Under all circumstances, using a GPU significantly enhances computational speed, especially for large problems. Clearly, GPU computing have significant potential in accelerating large-scale hydrological simulations, but care must be taken on the design and implementation of the model structure.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] GPU-Accelerated Batch Electromechanical Transient Simulation of Power System
    Wang, Yi
    Sun, Licheng
    Wang, Ziheng
    Feng, Yanjun
    PROCEEDINGS OF 2019 INTERNATIONAL FORUM ON SMART GRID PROTECTION AND CONTROL (PURPLE MOUNTAIN FORUM), VOL II, 2020, 585 : 673 - 684
  • [42] GPU-accelerated Monte Carlo simulation of MV-CBCT
    Shi, Mengying
    Myronakis, Marios
    Jacobson, Matthew
    Ferguson, Dianne
    Williams, Christopher
    Lehmann, Mathias
    Baturin, Paul
    Huber, Pascal
    Fueglistaller, Rony
    Lozano, Ingrid Valencia
    Harris, Thomas
    Morf, Daniel
    Berbeco, Ross, I
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (23):
  • [43] GPU-accelerated molecular dynamics simulation of solid covalent crystals
    Hou, Chaofeng
    Ge, Wei
    MOLECULAR SIMULATION, 2012, 38 (01) : 8 - 15
  • [44] GPU-accelerated visualisation of ADS granular flow target model
    Tian, Yan-Shan
    Zhou, Qingguo
    Sun, Hong-Yu
    Wu, Jiong
    Zhang, Xun-Chao
    Li, Kuan-Ching
    International Journal of High Performance Computing and Networking, 2015, 8 (04) : 381 - 389
  • [45] GPU accelerated flow solver for direct numerical simulation of turbulent flows
    Salvadore, Francesco
    Bernardini, Matteo
    Botti, Michela
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 129 - 142
  • [46] GPU-ACCELERATED SIMULATION OF A ROTARY VALVE BY THE DISCRETE ELEMENT METHOD
    Fuvesi, Balazs
    Ulbert, Zsolt
    HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY, 2019, 47 (02): : 31 - 42
  • [47] GPU-accelerated simulation of colloidal suspensions with direct hydrodynamic interactions
    M. Kopp
    F. Höfling
    The European Physical Journal Special Topics, 2012, 210 : 101 - 117
  • [48] GPU-Accelerated Field Simulation of HVAC Gas Insulated Lines
    Hensel, Hendrik
    Henkel, Marvin-Lucas
    Haussmann, Norman
    Joergens, Christoph
    Stroka, Steven
    Clemens, Markus
    2022 IEEE 20TH BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION-LONG PAPERS, CEFC-LONG, 2022,
  • [49] GPU-Accelerated Algorithm for On-line Probabilistic Power Flow
    Zhou, Gan
    Bo, Rui
    Chien, Lungsheng
    Zhang, Xu
    Yang, Shengchun
    Su, Dawei
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [50] GPU-Accelerated Computations for Supersonic Flow Modeling on Hybrid Grids
    Tian, Zhengyu
    Lai, Jianqi
    Yang, Fan
    Li, Hua
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1391 - 1397