A comparison of numerical schemes for the GPU-accelerated simulation of variably-saturated groundwater flow

被引:2
|
作者
Li, Zhi [1 ]
Caviedes-Voullieme, Daniel [2 ,3 ,4 ,5 ]
Oezgen-Xian, Ilhan [6 ,7 ]
Jiang, Simin [1 ]
Zheng, Na [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai, Peoples R China
[2] Forschungszentrum Julich, Julich Supercomp Ctr, Simulat & Data Lab Terr Syst, Julich, Germany
[3] Forschungszentrum Julich, Inst Bio & Geosci Agrosphere IBG 3, Julich, Germany
[4] High Performance Sci Comp Terr Syst, Geoverbund ABC J Julich, Julich, Germany
[5] Forschungszentrum Julich, Ctr Adv Simulat & Analyt CASA, Julich, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geoecol, Braunschweig, Germany
[7] Lawrence Berkeleey Natl Lab, Earth & Environm Sci Area, Berkeley, CA USA
关键词
Richards equation; Predictor-corrector method; Newton-Raphson method; Picard method; GPU computing; SOLVING RICHARDS EQUATION; HYDRAULIC CONDUCTIVITY; NONLINEAR-SYSTEMS; ITERATIVE METHODS; PARALLEL; PICARD; MODEL; ALGORITHM; TRANSPORT; SOLVERS;
D O I
10.1016/j.envsoft.2023.105900
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimal strategy to numerically solve the Richards equation is problem-dependent, especially on GPUs because an efficient numerical scheme on CPU might not scale well on GPU. In this work, four numerical schemes are coded to investigate their parallel performance on CPU and GPU. The results indicate that the scaling of Richards solvers on GPU is affected by the numerical scheme, the linear system solver, the soil constitutive model, the code structure, the problem size and the adaptive time stepping strategies. Compared with CPU, parallel simulations on GPU exhibit stronger variance in the scaling of different code sections. The poorly-scaled components could deteriorate the overall scaling. Under all circumstances, using a GPU significantly enhances computational speed, especially for large problems. Clearly, GPU computing have significant potential in accelerating large-scale hydrological simulations, but care must be taken on the design and implementation of the model structure.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A GPU-accelerated shallow flow model for tsunami simulations
    Amouzgar, Reza
    Liang, Qiuhua
    Smith, Luke
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2014, 167 (03) : 117 - 125
  • [32] GPU-Accelerated Algorithm for Online Probabilistic Power Flow
    Zhou, Gan
    Bo, Rui
    Chien, Lungsheng
    Zhang, Xu
    Yang, Shengchun
    Su, Dawei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 1132 - 1135
  • [33] GPU-Accelerated Solutions to Optimal Power Flow Problems
    Rakai, Logan
    Rosehart, William
    2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 2511 - 2516
  • [34] COMPARISON OF CPML IMPLEMENTATIONS FOR THE GPU-ACCELERATED FDTD SOLVER
    Toivanen, J. I.
    Stefanski, T. P.
    Kuster, N.
    Chavannes, N.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2011, 19 : 61 - 75
  • [35] GPU-Accelerated Sparse LU Factorization for Power System Simulation
    Gnanavignesh, R.
    Shenoy, U. Jayachandra
    Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, 2019,
  • [36] GPU-Accelerated Field Simulation of HVAC Gas Insulated Lines
    Hensel, Hendrik
    Henkel, Marvin-Lucas
    Haussmann, Norman
    Joergens, Christoph
    Stroka, Steven
    Clemens, Markus
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [37] The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications
    Jacques, Diederik
    Simunek, Jiri
    Mallants, Dirk
    van Genuchten, Martinus Th.
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2018, 66 (02) : 211 - 226
  • [38] GPU-accelerated simulation of colloidal suspensions with direct hydrodynamic interactions
    Kopp, M.
    Hoefling, F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 210 (01): : 101 - 117
  • [39] GPU-Accelerated Sparse LU Factorization for Power System Simulation
    Gnanavignesh, R.
    Shenoy, U. Jayachandra
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [40] A GPU-ACCELERATED COMPUTATIONAL TOOL FOR ASTEROID DISRUPTION MODELING AND SIMULATION
    Zimmerman, Ben J.
    Wie, Bong
    ASTRODYNAMICS 2015, 2016, 156 : 3367 - 3381