Gradient-free algorithms for distributed online convex optimization

被引:0
|
作者
Liu, Yuhang [1 ,2 ]
Zhao, Wenxiao [1 ,2 ,4 ]
Dong, Daoyi [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
[4] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会;
关键词
distributed algorithm; gradient-free algorithm; multiagent system; online convex optimization; CONSTRAINED OPTIMIZATION; COORDINATION; CONSENSUS;
D O I
10.1002/asjc.2996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the distributed bandit convex optimization of time-varying objective functions over a network. By introducing perturbations into the objective functions, we design a deterministic difference and a randomized difference to replace the gradient information of the objective functions and propose two classes of gradient-free distributed algorithms. We prove that both the two classes of algorithms achieve regrets of O(T-3/4) for convex objective functions and O(T-2/3) for strongly convex objective functions, with respect to the time index T and consensus of the estimates established as well. Simulation examples are given justifying the theoretical results.
引用
收藏
页码:2451 / 2468
页数:18
相关论文
共 50 条
  • [41] Gradient-Free and Gradient-Based Optimization of a Radial Turbine
    Lachenmaier, Nicolas
    Baumgaertner, Daniel
    Schiffer, Heinz-Peter
    Kech, Johannes
    [J]. INTERNATIONAL JOURNAL OF TURBOMACHINERY PROPULSION AND POWER, 2020, 5 (03)
  • [42] Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact
    Nikita Kornilov
    Alexander Gasnikov
    Pavel Dvurechensky
    Darina Dvinskikh
    [J]. Computational Management Science, 2023, 20
  • [43] Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact
    Kornilov, Nikita
    Gasnikov, Alexander
    Dvurechensky, Pavel
    Dvinskikh, Darina
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2023, 20 (01)
  • [44] Gradient-Free Algorithms for Solving Stochastic Saddle Optimization Problems with the Polyak-Lojasiewicz Condition
    Sadykov, S. I.
    Lobanov, A. V.
    Raigorodskii, A. M.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 535 - 547
  • [45] Gradient-free strategies to robust well control optimization
    Pinto, Jefferson Wellano Oliveira
    Tueros, Juan Alberto Rojas
    Horowitz, Bernardo
    da Silva, Silvana Maria Bastos Afonso
    Willmersdorf, Ramiro Brito
    de Oliveira, Diego Felipe Barbosa
    [J]. COMPUTATIONAL GEOSCIENCES, 2020, 24 (06) : 1959 - 1978
  • [46] Topology optimization methods with gradient-free perimeter approximation
    Amstutz, Samuel
    Van Goethem, Nicolas
    [J]. INTERFACES AND FREE BOUNDARIES, 2012, 14 (03) : 401 - 430
  • [47] Inverse design of dispersion for photonic devices based on LSTM and gradient-free optimization algorithms hybridization
    Yao, Tianhang
    Huang, Tianye
    Yan, Bin
    Ge, Mingfeng
    Yin, Jie
    Peng, Chuyu
    LI, Lu
    Sun, Wufeng
    Shum, Perry Ping
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (06) : 1525 - 1532
  • [48] An adaptive Bayesian approach to gradient-free global optimization
    Yu, Jianneng
    Morozov, Alexandre, V
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [49] Metamaterials design using gradient-free numerical optimization
    Diest, Kenneth
    Sweatlock, Luke A.
    Marthaler, Daniel E.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
  • [50] An enhanced gradient-tracking bound for distributed online stochastic convex optimization
    Alghunaim, Sulaiman A.
    Yuan, Kun
    [J]. SIGNAL PROCESSING, 2024, 217