Gradient-free algorithms for distributed online convex optimization

被引:0
|
作者
Liu, Yuhang [1 ,2 ]
Zhao, Wenxiao [1 ,2 ,4 ]
Dong, Daoyi [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
[4] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会;
关键词
distributed algorithm; gradient-free algorithm; multiagent system; online convex optimization; CONSTRAINED OPTIMIZATION; COORDINATION; CONSENSUS;
D O I
10.1002/asjc.2996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the distributed bandit convex optimization of time-varying objective functions over a network. By introducing perturbations into the objective functions, we design a deterministic difference and a randomized difference to replace the gradient information of the objective functions and propose two classes of gradient-free distributed algorithms. We prove that both the two classes of algorithms achieve regrets of O(T-3/4) for convex objective functions and O(T-2/3) for strongly convex objective functions, with respect to the time index T and consensus of the estimates established as well. Simulation examples are given justifying the theoretical results.
引用
收藏
页码:2451 / 2468
页数:18
相关论文
共 50 条
  • [31] Gradient-Free Algorithms for Solving Stochastic Saddle Optimization Problems with the Polyak–Łojasiewicz Condition
    S. I. Sadykov
    A. V. Lobanov
    A. M. Raigorodskii
    [J]. Programming and Computer Software, 2023, 49 : 535 - 547
  • [32] Decentralized Gradient-Free Methods for Stochastic Non-smooth Non-convex Optimization
    Lin, Zhenwei
    Xia, Jingfan
    Deng, Qi
    Luo, Luo
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 17477 - 17486
  • [33] Quantized Distributed Online Projection-Free Convex Optimization
    Zhang, Wentao
    Shi, Yang
    Zhang, Baoyong
    Lu, Kaihong
    Yuan, Deming
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1837 - 1842
  • [34] Reactive Power Optimization for Distribution Network Based on Distributed Random Gradient-Free Algorithm
    Xie, Jun
    Liang, Chunxiang
    Xiao, Yichen
    [J]. ENERGIES, 2018, 11 (03):
  • [35] Gradient-free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems on the simplex
    A. V. Gasnikov
    A. A. Lagunovskaya
    I. N. Usmanova
    F. A. Fedorenko
    [J]. Automation and Remote Control, 2016, 77 : 2018 - 2034
  • [36] Gradient-free Online Learning in Games with Delayed Rewards
    Heliou, Amelie
    Mertikopoulos, Panayotis
    Zhou, Zhengyuan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [37] Distributed Event-Triggered Random Gradient-Free Optimization Algorithm For Multiagent Systems
    Hu, Xiaojing
    Zhang, Huifeng
    Zhuo, Qingze
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4972 - 4977
  • [38] Exact Convergence of Gradient-Free Distributed Optimization Method in a Multi-Agent System
    Pang, Yipeng
    Hu, Guoqiang
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 5728 - 5733
  • [39] Effect of barren plateaus on gradient-free optimization
    Arrasmith, Andrew
    Cerezo, M.
    Czarnik, Piotr
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. QUANTUM, 2021, 5
  • [40] Automatic Tuning of Tensorflow's CPU Backend Using Gradient-Free Optimization Algorithms
    Mebratu, Derssie
    Hasabnis, Niranjan
    Mercati, Pietro
    Sharma, Gaurit
    Najnin, Shamima
    [J]. HIGH PERFORMANCE COMPUTING - ISC HIGH PERFORMANCE DIGITAL 2021 INTERNATIONAL WORKSHOPS, 2021, 12761 : 249 - 266