Multiclass classification for multidimensional functional data through deep neural networks

被引:0
|
作者
Wang, Shuoyang [1 ]
Cao, Guanqun [2 ]
机构
[1] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40202 USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
基金
美国国家科学基金会;
关键词
Functional data analysis; and phrases; deep neural networks; multiclass classification; rate of convergence; multidimensional functional data; CONVERGENCE-RATES; CLASSIFIERS;
D O I
10.1214/24-EJS2229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The intrinsically infinite -dimensional features of the functional observations over multidimensional domains render the standard classification methods effectively inapplicable. To address this problem, we introduce a novel multiclass functional deep neural network (mfDNN) classifier as an innovative data mining and classification tool. The architecture incorporates a sparse deep neural network with Rectified Linear Unit (ReLU) activation function, minimizing cross -entropy loss in a multiclass classification framework. This design enables the utilization of modern computational tools. The convergence rates of the misclassification risk functions are also derived for both fully observed and discretely observed multidimensional functional data. The efficacy of mfDNN is demonstrated through simulations and several benchmark datasets from different application domains.
引用
收藏
页码:1248 / 1292
页数:45
相关论文
共 50 条
  • [1] Deep neural network classifier for multidimensional functional data
    Wang, Shuoyang
    Cao, Guanqun
    Shang, Zuofeng
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1667 - 1686
  • [2] Automatic multiclass classification of laryngeal cancer using deep convolution neural networks
    Munirathinam, Ramesh
    Tamilnidhi, M.
    Thangaraj, Rajasekaran
    Eswaran, Sivaraman
    Chandrasekaran, Gokul
    Kumar, Neelam Sanjeev
    [J]. ELECTRONICS LETTERS, 2024, 60 (01)
  • [3] Multiclass Classification of Metrologically Resourceful Tripartite Quantum States with Deep Neural Networks
    Rizvi, Syed Muhammad Abuzar
    Asif, Naema
    Ulum, Muhammad Shohibul
    Duong, Trung Q.
    Shin, Hyundong
    [J]. SENSORS, 2022, 22 (18)
  • [4] Bayesian classification of multiclass functional data
    Li, Xiuqi
    Ghosal, Subhashis
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4669 - 4696
  • [5] Using Shapley additive explanations and saliency for interpretation of multiclass classification of PDX spectral data with deep neural networks
    Rafsanjani, Mohd Rifqi
    Dooney, Alison
    Suresh, Rahul
    O'Farrell, Alice C.
    Jarzabek, Monika A.
    Shiels, Liam P.
    Byrne, Annette T.
    Prehn, Jochen H.
    Meade, Aidan D.
    [J]. DATA SCIENCE FOR PHOTONICS AND BIOPHOTONICS, 2024, 13011
  • [6] DEEP SUPERVISED LEARNING FOR HYPERSPECTRAL DATA CLASSIFICATION THROUGH CONVOLUTIONAL NEURAL NETWORKS
    Makantasis, Konstantinos
    Karantzalos, Konstantinos
    Doulamis, Anastasios
    Doulamis, Nikolaos
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4959 - 4962
  • [7] Deep Learning for Hyperspectral Data Classification through Exponential Momentum Deep Convolution Neural Networks
    Yue, Qi
    Ma, Caiwen
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [8] Multiclass pattern classification using neural networks
    Ou, GB
    Murphey, YL
    Feldkamp, L
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 585 - 588
  • [9] Sensitivity of Modern Deep Learning Neural Networks to Unbalanced Datasets in Multiclass Classification Problems
    Barulina, Marina
    Okunkov, Sergey
    Ulitin, Ivan
    Sanbaev, Askhat
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [10] Classification of indoor actions through deep neural networks
    Augello, Agnese
    Maniscalco, Umberto
    Vella, Filippo
    Bentivenga, Vincenzo
    Gaglio, Salvatore
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 82 - 87