Deep neural network classifier for multidimensional functional data

被引:3
|
作者
Wang, Shuoyang [1 ]
Cao, Guanqun [2 ]
Shang, Zuofeng [3 ]
机构
[1] Yale Univ, Dept Biostat, New Haven, CT USA
[2] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ USA
关键词
functional classification; functional data analysis; functional neural networks; Minimax excess misclassification risk; multidimensional functional data; RATES;
D O I
10.1111/sjos.12660
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new approach, called as functional deep neural network (FDNN), for classifying multidimensional functional data. Specifically, a deep neural network is trained based on the principal components of the training data which shall be used to predict the class label of a future data function. Unlike the popular functional discriminant analysis approaches which only work for one-dimensional functional data, the proposed FDNN approach applies to general non-Gaussian multidimensional functional data. Moreover, when the log density ratio possesses a locally connected functional modular structure, we show that FDNN achieves minimax optimality. The superiority of our approach is demonstrated through both simulated and real-world datasets.
引用
收藏
页码:1667 / 1686
页数:20
相关论文
共 50 条
  • [1] A functional neural network prototype for multidimensional data analysis
    Sirlantzis, K
    Howells, G
    Paschalakis, S
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 98 - 102
  • [2] Multiclass classification for multidimensional functional data through deep neural networks
    Wang, Shuoyang
    Cao, Guanqun
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 1248 - 1292
  • [3] Deep Convolutional Generalized Classifier Neural Network
    Sarigul, Mehmet
    Ozyildirim, B. Melis
    Avci, Mutlu
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2839 - 2854
  • [4] Deep Convolutional Generalized Classifier Neural Network
    Mehmet Sarigul
    B. Melis Ozyildirim
    Mutlu Avci
    [J]. Neural Processing Letters, 2020, 51 : 2839 - 2854
  • [5] A Robust Text Classifier Based on Denoising Deep Neural Network in the Analysis of Big Data
    Aziguli, Wulamu
    Zhang, Yuanyu
    Xie, Yonghong
    Zhang, Dezheng
    Luo, Xiong
    Li, Chunmiao
    Zhang, Yao
    [J]. SCIENTIFIC PROGRAMMING, 2017, 2017
  • [6] Deep Neural Network Classifier for Hand Movement Prediction
    Basturk, Alper
    Yuksel, Mehmet Emin
    Caliskan, Abdullah
    Badem, Hasan
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [7] Data-driven technological life prediction of mechanical and electrical products based on Multidimensional Deep Neural Network: Functional perspective
    Yang, Jie
    Jiang, Zhigang
    Zhu, Shuo
    Zhang, Hua
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2022, 64 : 53 - 67
  • [8] Multi-Frequency-Based CXR Data Normalization for Deep-Neural-Network Classifier
    Kim, H.
    Sim, W.
    Cho, D.
    Cho, S.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [9] GlAIcomics: a deep neural network classifier for spectroscopy-augmented mass spectrometric glycans data
    Barillot, Thomas
    Schindler, Baptiste
    Moge, Baptiste
    Fadda, Elisa
    Lepine, Franck
    Compagnon, Isabelle
    [J]. BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2023, 19 : 1825 - 1831
  • [10] Regularized Chained Deep Neural Network Classifier for Multiple Annotators
    Gil-Gonzalez, Julian
    Valencia-Duque, Andres
    Alvarez-Meza, Andres
    Orozco-Gutierrez, Alvaro
    Garcia-Moreno, Andrea
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):