Automatic multiclass classification of laryngeal cancer using deep convolution neural networks

被引:1
|
作者
Munirathinam, Ramesh [1 ]
Tamilnidhi, M. [2 ]
Thangaraj, Rajasekaran [3 ]
Eswaran, Sivaraman [4 ]
Chandrasekaran, Gokul [5 ]
Kumar, Neelam Sanjeev [6 ]
机构
[1] Karpagam Acad Higher Educ, Dept Biomed Engn, Coimbatore, India
[2] Karpagam Coll Engn, Dept Elect & Commun Engn, Coimbatore, India
[3] KPR Inst Engn & Technol, Ctr IoT & AI CITI, Dept Comp Sci & Engn, Coimbatore, India
[4] Curtin Univ, Dept Elect & Comp Engn, Miri, Malaysia
[5] Velalar Coll Engn & Technol, Dept Elect & Elect Engn, Erode, India
[6] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Vadapalani Campus, Chennai, India
关键词
artificial intelligence; convolutional neural nets; health care;
D O I
10.1049/ell2.13070
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, the classification of laryngeal cancer is attempted using deeply learned features obtained using Inception V3, Squeezenet, and VGG-16 embedders in the Orange toolbox. Machine learning algorithms such as KNN, SVM, random forest, decision tree, and neural network classifiers are employed to classify the stages or categories of laryngeal cancer. The ranking of deep learning feature values is carried out using state-of-the-art metrics such as information gain, information gain ratio, chi-square, and reliefF. It is observed that the performance of the algorithms is affected by the cross-validation. In this work, the classification of laryngeal cancer is attempted using deeply learned features obtained using Inception V3, Squeezenet, and VGG-16 embedders in the Orange toolbox. Machine learning algorithms such as KNN, SVM, random forest, decision tree, and neural network classifiers are employed to classify the stages or categories of laryngeal cancer.image
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Intelligent Multiclass Skin Cancer Detection Using Convolution Neural Networks
    Alabduljabbar, Reham
    Alshamlan, Hala
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 831 - 847
  • [2] Classification of Breast Cancer from Mammogram images using Deep Convolution Neural Networks
    Shakeel, Sobia
    Raja, Gulistan
    [J]. PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 595 - 599
  • [3] Deep Convolution Neural Networks for Image Classification
    Kulkarni, Arun D.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 18 - 23
  • [4] Deep convolution neural networks learned image classification for early cancer detection using lightweight
    Ramana, Kothapalli Seshadri
    Chowdappa, Kummara Bala
    Obulesu, Oorichintala
    Mandru, Deena Babu
    Kallam, Suresh
    [J]. SOFT COMPUTING, 2022, 26 (12) : 5937 - 5943
  • [5] Ensemble of Convolution Neural Networks for Automatic Tuberculosis Classification
    Oloko-Oba, Mustapha
    Viriri, Serestina
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 549 - 559
  • [6] Deep convolution neural networks learned image classification for early cancer detection using lightweight
    Kothapalli Seshadri Ramana
    Kummara Bala Chowdappa
    Oorichintala Obulesu
    Deena Babu Mandru
    Suresh Kallam
    [J]. Soft Computing, 2022, 26 : 5937 - 5943
  • [7] Multiclass pattern classification using neural networks
    Ou, GB
    Murphey, YL
    Feldkamp, L
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 585 - 588
  • [8] Automatic Liver Cancer Detection Using Deep Convolution Neural Network
    Napte, Kiran Malhari
    Mahajan, Anurag
    Urooj, Shabana
    [J]. IEEE ACCESS, 2023, 11 (94852-94862) : 94852 - 94862
  • [9] Automatic Detection of Eye Cataract using Deep Convolution Neural Networks (DCNNs)
    Hossain, Md Rajib
    Afroze, Sadia
    Siddique, Nazmul
    Hoque, Mohammed Moshiul
    [J]. 2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1333 - 1338
  • [10] Finger Type Classification with Deep Convolution Neural Networks
    Al-Wajih, Yousif Ahmed
    Hamanah, Waleed M.
    Abido, Mohammad A.
    Al-Sunni, Fouad
    Alwajih, Fakhraddin
    [J]. PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2022, : 247 - 254