Automatic multiclass classification of laryngeal cancer using deep convolution neural networks

被引:1
|
作者
Munirathinam, Ramesh [1 ]
Tamilnidhi, M. [2 ]
Thangaraj, Rajasekaran [3 ]
Eswaran, Sivaraman [4 ]
Chandrasekaran, Gokul [5 ]
Kumar, Neelam Sanjeev [6 ]
机构
[1] Karpagam Acad Higher Educ, Dept Biomed Engn, Coimbatore, India
[2] Karpagam Coll Engn, Dept Elect & Commun Engn, Coimbatore, India
[3] KPR Inst Engn & Technol, Ctr IoT & AI CITI, Dept Comp Sci & Engn, Coimbatore, India
[4] Curtin Univ, Dept Elect & Comp Engn, Miri, Malaysia
[5] Velalar Coll Engn & Technol, Dept Elect & Elect Engn, Erode, India
[6] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Vadapalani Campus, Chennai, India
关键词
artificial intelligence; convolutional neural nets; health care;
D O I
10.1049/ell2.13070
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, the classification of laryngeal cancer is attempted using deeply learned features obtained using Inception V3, Squeezenet, and VGG-16 embedders in the Orange toolbox. Machine learning algorithms such as KNN, SVM, random forest, decision tree, and neural network classifiers are employed to classify the stages or categories of laryngeal cancer. The ranking of deep learning feature values is carried out using state-of-the-art metrics such as information gain, information gain ratio, chi-square, and reliefF. It is observed that the performance of the algorithms is affected by the cross-validation. In this work, the classification of laryngeal cancer is attempted using deeply learned features obtained using Inception V3, Squeezenet, and VGG-16 embedders in the Orange toolbox. Machine learning algorithms such as KNN, SVM, random forest, decision tree, and neural network classifiers are employed to classify the stages or categories of laryngeal cancer.image
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Environmental Noise Classification Using Convolution Neural Networks
    Li, Mengyuan
    Gao, Zhenbin
    Zang, Xinzhe
    Wang, Xia
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2018), 2018, : 182 - 185
  • [32] Automatic Music Genre Classification using Convolution Neural Network
    Vishnupriya, S.
    Meenakshi, K.
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [33] Melanoma and Nevi Classification using Convolution Neural Networks
    Grove, Robert
    Green, Richard
    [J]. 2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2020,
  • [34] Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
    Saito, Hiroaki
    Tanimoto, Tetsuya
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Hirasawa, Dai
    Matsuda, Tomoki
    Endo, Yuma
    Tada, Tomohiro
    [J]. GASTROENTEROLOGY REPORT, 2021, 9 (03): : 226 - 233
  • [35] Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks
    Zhang, Ya-Jie
    Huang, Jun-Feng
    Gong, Neng
    Ling, Zhen-Hua
    Hu, Yu
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (01): : 478 - 487
  • [36] Automatic 12-lead ECG Classification Using Deep Neural Networks
    Cai, Wenjie
    Hu, Shuaicong
    Yang, Jingying
    Cao, Jianjian
    [J]. 2020 COMPUTING IN CARDIOLOGY, 2020,
  • [37] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Hirotoshi Takiyama
    Tsuyoshi Ozawa
    Soichiro Ishihara
    Mitsuhiro Fujishiro
    Satoki Shichijo
    Shuhei Nomura
    Motoi Miura
    Tomohiro Tada
    [J]. Scientific Reports, 8
  • [38] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Takiyama, Hirotoshi
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Nomura, Shuhei
    Miura, Motoi
    Tada, Tomohiro
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [39] Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
    Zang, Ke
    Wu, Wenqi
    Luo, Wei
    [J]. SENSORS, 2021, 21 (19)
  • [40] Continuous electroencephalographic signal automatic classification using Deep Differential Neural Networks
    Llorente-Vidrio, D.
    Ballesteros, M.
    Cruz, D.
    Salgado, I
    Chairez, I
    [J]. 2020 7TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'20), VOL 1, 2020, : 358 - 363