Learning Networks from Gaussian Graphical Models and Gaussian Free Fields

被引:0
|
作者
Ghosh, Subhro [1 ]
Mukherjee, Soumendu Sundar [2 ]
Tran, Hoang-Son [1 ]
Gangopadhyay, Ujan [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore, Singapore
[2] Indian Stat Inst, Theoret Stat & Math Unit, Kolkata, India
关键词
Precision matrix; Gaussian free field; Gaussian graphical model; HIGH-DIMENSIONAL COVARIANCE; PRECISION MATRICES; OPTIMAL RATES; SELECTION; CONVERGENCE; CONSISTENCY; RECOVERY;
D O I
10.1007/s10955-024-03257-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the problem of estimating the structure of a weighted network from repeated measurements of a Gaussian graphical model (GGM) on the network. In this vein, we consider GGMs whose covariance structures align with the geometry of the weighted network on which they are based. Such GGMs have been of longstanding interest in statistical physics, and are referred to as the Gaussian free field (GFF). In recent years, they have attracted considerable interest in the machine learning and theoretical computer science. In this work, we propose a novel estimator for the weighted network (equivalently, its Laplacian) from repeated measurements of a GFF on the network, based on the Fourier analytic properties of the Gaussian distribution. In this pursuit, our approach exploits complex-valued statistics constructed from observed data, that are of interest in their own right. We demonstrate the effectiveness of our estimator with concrete recovery guarantees and bounds on the required sample complexity. In particular, we show that the proposed statistic achieves the parametric rate of estimation for fixed network size. In the setting of networks growing with sample size, our results show that for Erdos-Renyi random graphs G(d, p) above the connectivity threshold, network recovery takes place with high probability as soon as the sample size n satisfies n >> d4logd center dot p-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \gg d<^>4 \log d \cdot p<^>{-2}$$\end{document}.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Learning unfaithful k-separable Gaussian graphical models
    Soh, De Wen
    Tatikonda, Sekhar
    [J]. Journal of Machine Learning Research, 2019, 20
  • [32] Proper Quaternion Gaussian Graphical Models
    Sloin, Alba
    Wiesel, Ami
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5487 - 5496
  • [33] Gaussian inference in loopy graphical models
    Plarre, K
    Kumar, PR
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5747 - 5752
  • [34] TREK SEPARATION FOR GAUSSIAN GRAPHICAL MODELS
    Sullivant, Seth
    Talaska, Kelli
    Draisma, Jan
    [J]. ANNALS OF STATISTICS, 2010, 38 (03): : 1665 - 1685
  • [35] Testing Unfaithful Gaussian Graphical Models
    Soh, De Wen
    Tatikonda, Sekhar
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [36] Lattices of Graphical Gaussian Models with Symmetries
    Gehrmann, Helene
    [J]. SYMMETRY-BASEL, 2011, 3 (03): : 653 - 679
  • [37] GROUPS ACTING ON GAUSSIAN GRAPHICAL MODELS
    Draisma, Jan
    Kuhnt, Sonja
    Zwiernik, Piotr
    [J]. ANNALS OF STATISTICS, 2013, 41 (04): : 1944 - 1969
  • [38] On the impact of contaminations in graphical Gaussian models
    Gottard A.
    Pacillo S.
    [J]. Statistical Methods and Applications, 2007, 15 (3): : 343 - 354
  • [39] On generating random Gaussian graphical models
    Cordoba, Irene
    Varando, Gherardo
    Bielza, Concha
    Larranaga, Pedro
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 125 : 240 - 250
  • [40] Gaussian Approximation of Collective Graphical Models
    Liu, Li-Ping
    Sheldon, Daniel
    Dietterich, Thomas G.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1602 - 1610