A hybrid deterministic-deterministic approach for high-dimensional Bayesian variable selection with a default prior

被引:1
|
作者
Lee, Jieun [1 ]
Goh, Gyuhyeong [1 ]
机构
[1] Kansas State Univ, Dept Stat, 1116 Mid Campus Dr N, Manhattan, KS 66506 USA
关键词
Forward selection; Greedy algorithm; High-dimensional Bayesian linear regression; Highest probability model (HPM); REGRESSION; GIBBS;
D O I
10.1007/s00180-023-01368-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying relevant variables among numerous potential predictors has been of primary interest in modern regression analysis. While stochastic search algorithms have surged as a dominant tool for Bayesian variable selection, when the number of potential predictors is large, their practicality is constantly challenged due to high computational cost as well as slow convergence. In this paper, we propose a new Bayesian variable selection scheme by using hybrid deterministic-deterministic variable selection (HD-DVS) algorithm that asymptotically ensures a rapid convergence to the global mode of the posterior model distribution. A key feature of HD-DVS is that it allows us to circumvent the iterative computation of inverse matrices, which is a common computational bottleneck in Bayesian variable selection. A simulation study is conducted to demonstrate that our proposed method outperforms existing Bayesian and frequentist methods. An analysis of the Bardet-Biedl syndrome gene expression data is presented to illustrate the applicability of HD-DVS to real data.
引用
收藏
页码:1659 / 1681
页数:23
相关论文
共 50 条
  • [41] On the Validity of Linear Response Theory in High-Dimensional Deterministic Dynamical Systems
    Wormell, Caroline L.
    Gottwald, Georg A.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1479 - 1498
  • [42] Sparse Bayesian variable selection in high-dimensional logistic regression models with correlated priors
    Ma, Zhuanzhuan
    Han, Zifei
    Ghosh, Souparno
    Wu, Liucang
    Wang, Min
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [43] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Yang, Aijun
    Tian, Yuzhu
    Li, Yunxian
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 245 - 258
  • [44] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Aijun Yang
    Yuzhu Tian
    Yunxian Li
    Jinguan Lin
    Computational Statistics, 2020, 35 : 245 - 258
  • [45] SPATIAL BAYESIAN VARIABLE SELECTION AND GROUPING FOR HIGH-DIMENSIONAL SCALAR-ON-IMAGE REGRESSION
    Li, Fan
    Zhang, Tingting
    Wang, Quanli
    Gonzalez, Marlen Z.
    Maresh, Erin L.
    Coan, James A.
    ANNALS OF APPLIED STATISTICS, 2015, 9 (02): : 687 - 713
  • [46] Bayesian variable selection in clustering high-dimensional data via a mixture of finite mixtures
    Doo, Woojin
    Kim, Heeyoung
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (12) : 2551 - 2568
  • [47] Variable selection and estimation in high-dimensional models
    Horowitz, Joel L.
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2015, 48 (02): : 389 - 407
  • [48] Variable selection for high-dimensional incomplete data
    Liang, Lixing
    Zhuang, Yipeng
    Yu, Philip L. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 192
  • [49] High-dimensional graphs and variable selection with the Lasso
    Meinshausen, Nicolai
    Buehlmann, Peter
    ANNALS OF STATISTICS, 2006, 34 (03): : 1436 - 1462
  • [50] High-Dimensional Variable Selection for Survival Data
    Ishwaran, Hemant
    Kogalur, Udaya B.
    Gorodeski, Eiran Z.
    Minn, Andy J.
    Lauer, Michael S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 205 - 217