A hybrid deterministic-deterministic approach for high-dimensional Bayesian variable selection with a default prior

被引:1
|
作者
Lee, Jieun [1 ]
Goh, Gyuhyeong [1 ]
机构
[1] Kansas State Univ, Dept Stat, 1116 Mid Campus Dr N, Manhattan, KS 66506 USA
关键词
Forward selection; Greedy algorithm; High-dimensional Bayesian linear regression; Highest probability model (HPM); REGRESSION; GIBBS;
D O I
10.1007/s00180-023-01368-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying relevant variables among numerous potential predictors has been of primary interest in modern regression analysis. While stochastic search algorithms have surged as a dominant tool for Bayesian variable selection, when the number of potential predictors is large, their practicality is constantly challenged due to high computational cost as well as slow convergence. In this paper, we propose a new Bayesian variable selection scheme by using hybrid deterministic-deterministic variable selection (HD-DVS) algorithm that asymptotically ensures a rapid convergence to the global mode of the posterior model distribution. A key feature of HD-DVS is that it allows us to circumvent the iterative computation of inverse matrices, which is a common computational bottleneck in Bayesian variable selection. A simulation study is conducted to demonstrate that our proposed method outperforms existing Bayesian and frequentist methods. An analysis of the Bardet-Biedl syndrome gene expression data is presented to illustrate the applicability of HD-DVS to real data.
引用
收藏
页码:1659 / 1681
页数:23
相关论文
共 50 条
  • [31] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 127 - 143
  • [32] Posterior model consistency in high-dimensional Bayesian variable selection with arbitrary priors
    Hua, Min
    Goh, Gyuhyeong
    STATISTICS & PROBABILITY LETTERS, 2025, 223
  • [33] Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    Yau, P
    Kohn, R
    Wood, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) : 23 - 54
  • [34] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Aijun Yang
    Yunxian Li
    Niansheng Tang
    Jinguan Lin
    Computational Statistics, 2015, 30 : 399 - 418
  • [35] Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics
    Li, Fan
    Zhang, Nancy R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1202 - 1214
  • [36] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [37] Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions
    Bondell, Howard D.
    Reich, Brian J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1610 - 1624
  • [38] Bayesian Model Selection in High-Dimensional Settings
    Johnson, Valen E.
    Rossell, David
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) : 649 - 660
  • [39] Efficient and deterministic high-dimensional controlled-SWAP gates on hybrid linear optical systems with high fidelity
    Jiang, Gui -Long
    Yuan, Jun-Bin
    Liu, Wen-Qiang
    Wei, Hai-Rui
    PHYSICAL REVIEW APPLIED, 2024, 21 (01)
  • [40] On the Validity of Linear Response Theory in High-Dimensional Deterministic Dynamical Systems
    Caroline L. Wormell
    Georg A. Gottwald
    Journal of Statistical Physics, 2018, 172 : 1479 - 1498