Additive Influence of Top Metal Contact and Alumina Deposition on the Threshold Voltage of Suspended Carbon Nanotube Field-Effect Transistors

被引:1
|
作者
Thodkar, Kishan [1 ]
Haluska, Miroslav [1 ]
Hierold, Christofer [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Micro & Nanosyst, Tannenstr 3, CH-8092 Zurich, Switzerland
来源
ACS OMEGA | 2023年 / 8卷 / 30期
关键词
ATOMIC LAYER DEPOSITION; WORK FUNCTION; NOISE RATIO; AL2O3; PERFORMANCE;
D O I
10.1021/acsomega.3c03602
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One-dimensional nanostructures such as carbon nanotubesoffer excellentproperties useful for applications in gas sensors, piezoresistivedevices, and radio frequency resonators. Considering their nanoscaleform factor, carbon nanotubes (CNTs) are highly sensitive to surfaceadsorbents. This study presents the fabrication flow of CNT deviceswith extended passivated areas around electrical contacts betweenthe CNT and source and drain electrodes. These types of structurescould help in understanding the intrinsic CNT response by eliminatingthe analyte impact on the Schottky barrier regions of the CNT field-effecttransistors (CNTFETs). The influence of multiple processing conditionson the electronic properties of CNTFETs with a suspended individualCNT used as the CNTFET channel is presented. Our findings show a thresholdvoltage shift in CNT I (SD)-V (g) characteristics following the metal depositionand alumina atomic layer deposition.
引用
收藏
页码:27697 / 27702
页数:6
相关论文
共 50 条
  • [21] THRESHOLD VOLTAGE INSTABILITY OF MOS FIELD-EFFECT TRANSISTORS
    SHANKAR, SR
    MISRA, RP
    RAND, HT
    MICROELECTRONICS AND RELIABILITY, 1978, 17 (02): : 305 - 308
  • [22] Effect of Top Metal Contact on the Electrical Properties of Suspended Spiral Multiwalled Carbon Nanotube
    Dhall, Shivani
    Jaggi, Neena
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 : 1269 - 1271
  • [23] THRESHOLD VOLTAGE OF NARROW CHANNEL FIELD-EFFECT TRANSISTORS
    KROELL, KE
    ACKERMAN, GK
    SOLID-STATE ELECTRONICS, 1976, 19 (01) : 77 - 81
  • [24] Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes
    Wind, SJ
    Appenzeller, J
    Martel, R
    Derycke, V
    Avouris, P
    APPLIED PHYSICS LETTERS, 2002, 80 (20) : 3817 - 3819
  • [25] Simulation of the lateral electrical field for the analysis of threshold voltage instabilities of suspended-gate field-effect transistors
    Gergintschew, Z.
    Schipanski, D.
    Kornetzky, P.
    Eisele, I.
    Flietner, B.
    Sensors and Actuators, B: Chemical, 1993, B12 (03) : 231 - 235
  • [26] Carbon nanotube field-effect transistors with molecular interface
    Chen, Kan-Sheng
    McGill, Stephen A.
    Xiong, Peng
    APPLIED PHYSICS LETTERS, 2011, 98 (12)
  • [27] Inherent linearity in carbon nanotube field-effect transistors
    Baumgardner, James E.
    Pesetski, Aaron A.
    Murduck, James M.
    Przybysz, John X.
    Adam, John D.
    Zhang, Hong
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [28] The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials
    Xiao, Z.
    Camino, F. E.
    NANOTECHNOLOGY, 2009, 20 (13)
  • [29] Vertically aligned carbon nanotube field-effect transistors
    Li, Jingqi
    Zhao, Chao
    Wang, Qingxiao
    Zhang, Qiang
    Wang, Zhihong
    Zhang, X. X.
    Abutaha, A. I.
    Alshareef, H. N.
    CARBON, 2012, 50 (12) : 4628 - 4632
  • [30] Extrapolated fmax for carbon nanotube field-effect transistors
    Castro, LC
    Pulfrey, DL
    NANOTECHNOLOGY, 2006, 17 (01) : 300 - 304