Jackknife Kibria-Lukman estimator for the beta regression model

被引:2
|
作者
Koc, Tuba [1 ]
Dunder, Emre [2 ]
机构
[1] Cankiri Karatekin Univ, Stat Dept, Cankiri, Turkiye
[2] Ondokuz Mayis Univ, Stat Dept, Samsun, Turkiye
关键词
Beta regression model; jackknife KL estimator; KL estimator; liu estimator; multicollinearity; ridge estimator; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1080/03610926.2023.2273206
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The beta regression model is a flexible model, which widely used when the dependent variable is in ratios and percentages in the range of (0.1). The coefficients of the beta regression model are estimated using the maximum likelihood method. In cases where there is a multicollinearity problem, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance.In the presence of multicollinearity, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance. In this study, KL estimator and its jackknifed version are proposed to reduce the effects of multicollinearity in the beta regression model. The performance of the proposed jackknifed KL beta regression estimator is compared with ridge, Liu and KL estimators through simulation studies and real data applications. The results show that the proposed estimators mostly outperform ML, ridge, Liu and KL estimators.
引用
收藏
页码:7789 / 7805
页数:17
相关论文
共 50 条
  • [41] Jackknife model averaging for linear regression models with missing responses
    Zeng, Jie
    Cheng, Weihu
    Hu, Guozhi
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 583 - 616
  • [42] Jackknife model averaging for high-dimensional quantile regression
    Wang, Miaomiao
    Zhang, Xinyu
    Wan, Alan T. K.
    You, Kang
    Zou, Guohua
    [J]. BIOMETRICS, 2023, 79 (01) : 178 - 189
  • [43] JACKKNIFE AND BOOTSTRAP ESTIMATORS FOR THE ERROR IN BOTH VARIABLES REGRESSION-MODEL
    OOSTHUYZEN, A
    DEWET, AG
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1984, 18 (02) : 194 - 195
  • [44] A simple estimator for a shared frailty regression model
    Fine, JP
    Glidden, DV
    Lee, KE
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 317 - 329
  • [45] The KL estimator for the inverse Gaussian regression model
    Lukman, Adewale F.
    Algannal, Zakariya Y.
    Kibria, B. M. Golam
    Ayinde, Kayode
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):
  • [46] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270
  • [47] Recursive kernel estimator in a semiparametric regression model
    Nkou, Emmanuel De Dieu
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (01) : 145 - 171
  • [48] A new biased estimator in logistic regression model
    Ozkale, M. Revan
    Arican, Engin
    [J]. STATISTICS, 2016, 50 (02) : 233 - 253
  • [49] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [50] On the Liu estimator in the beta and Kumaraswamy regression models: A comparative study
    Pirmohammadi, Shima
    Bidram, Hamid
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (24) : 8553 - 8578