DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data

被引:1
|
作者
Chen, Fengxin [1 ,3 ,4 ]
Yu, Ye [1 ,3 ,4 ]
Ni, Liangliang [1 ,4 ,5 ]
Zhang, Zhenya [2 ]
Lu, Qiang [1 ,3 ,4 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Minist Educ, Hefei 230009, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Anhui Key Lab Intelligent Bldg & Bldg Energy Conse, Hefei 230601, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei 230009, Anhui, Peoples R China
[4] Hefei Univ Technol, Intelligent Interconnected Syst Lab Anhui Prov, Hefei 230009, Anhui, Peoples R China
[5] Hefei Univ Technol, Sch Software, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual analysis; Spatio-temporal data; Interaction design; Drones; VISUALIZATION; ANALYTICS; FRAMEWORK; MOVEMENT;
D O I
10.1007/s12650-024-00982-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators' analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 50 条
  • [21] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [22] Spatio-temporal interactive fusion based visual object tracking method
    Huang, Dandan
    Yu, Siyu
    Duan, Jin
    Wang, Yingzhi
    Yao, Anni
    Wang, Yiwen
    Xi, Junhan
    FRONTIERS IN PHYSICS, 2023, 11
  • [23] Interactive spatio-temporal visual map model for web video retrieval
    Luan, Huan-Bo
    Lin, Shou-Xun
    Tang, Sheng
    Neo, Shi-Yong
    Chua, Tat-Seng
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 560 - +
  • [24] Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity
    Elizabeth A. Mack
    Yifan Zhang
    Sergio Rey
    Ross Maciejewski
    Journal of Geographical Systems, 2014, 16 : 183 - 209
  • [25] Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity
    Mack, Elizabeth A.
    Zhang, Yifan
    Rey, Sergio
    Maciejewski, Ross
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2014, 16 (02) : 183 - 209
  • [26] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [27] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [28] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [29] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [30] Visual analysis of air pollution spatio-temporal patterns
    Jiayang Li
    Chongke Bi
    The Visual Computer, 2023, 39 : 3715 - 3726