DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data

被引:0
|
作者
Chen, Fengxin [1 ,3 ,4 ]
Yu, Ye [1 ,3 ,4 ]
Ni, Liangliang [1 ,4 ,5 ]
Zhang, Zhenya [2 ]
Lu, Qiang [1 ,3 ,4 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Minist Educ, Hefei 230009, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Anhui Key Lab Intelligent Bldg & Bldg Energy Conse, Hefei 230601, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei 230009, Anhui, Peoples R China
[4] Hefei Univ Technol, Intelligent Interconnected Syst Lab Anhui Prov, Hefei 230009, Anhui, Peoples R China
[5] Hefei Univ Technol, Sch Software, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual analysis; Spatio-temporal data; Interaction design; Drones; VISUALIZATION; ANALYTICS; FRAMEWORK; MOVEMENT;
D O I
10.1007/s12650-024-00982-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators' analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 50 条
  • [1] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [2] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412
  • [3] Toward an interactive system for checking spatio-temporal data quality
    Plumejeaud, Christine
    Azzi, Dounia
    Villanova-Oliver, Marlene
    Gensel, Jerome
    [J]. SPATIAL STATISTICS 2011: MAPPING GLOBAL CHANGE, 2011, 7 : 158 - 163
  • [4] A Characterization of Interactive Visual Data Stories With a Spatio-Temporal Context
    Mayer, Benedikt
    Steinhauer, Nastasja
    Preim, Bernhard
    Meuschke, Monique
    [J]. COMPUTER GRAPHICS FORUM, 2023, 42 (06)
  • [5] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liu, Liyan
    Zhan, Hongxin
    Liu, Jiaxin
    Man, Jiaju
    [J]. JOURNAL OF VISUALIZATION, 2019, 22 (01) : 141 - 160
  • [6] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liyan Liu
    Hongxin Zhan
    Jiaxin Liu
    Jiaju Man
    [J]. Journal of Visualization, 2019, 22 : 141 - 160
  • [7] OFViser: An Interactive Visual System for Spatio-temporal Analysis of Ocean Front
    Song, Jian
    Xie, Cui
    Dong, Junyu
    [J]. 2020 11TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2020,
  • [8] Interactive Visual Exploration of Spatio-Temporal Urban Data Sets using Urbane
    Doraiswamy, Harish
    Zacharatou, Eleni Tzirita
    Miranda, Fabio
    Lage, Marcos
    Ailamaki, Anastasia
    Silva, Claudio T.
    Freire, Juliana
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1693 - 1696
  • [9] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390
  • [10] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    [J]. IEEE ACCESS, 2021, 9 : 165014 - 165033