Recursive identification of a nonlinear state space model

被引:0
|
作者
Wigren, Torbjoern [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Syst andControl, SE-75105 Uppsala, Sweden
关键词
averaging; convergence; nonlinear systems; prediction error method; state-space model; PREDICTION ERROR IDENTIFICATION; SYSTEM-IDENTIFICATION; CONVERGENCE;
D O I
10.1002/acs.3531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right-hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over-parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [31] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [32] Polynomial Nonlinear Fractional State Space System Identification
    Marzougui, Soumaya
    Atitallah, Asma
    Bedoui, Saida
    Abderrahim, Kamel
    2019 19TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2019, : 286 - 291
  • [33] Deep State Space Models for Nonlinear System Identification
    Gedon, Daniel
    Wahlstrom, Niklas
    Schon, Thomas B.
    Ljung, Lennart
    IFAC PAPERSONLINE, 2021, 54 (07): : 481 - 486
  • [34] Simple recursive algorithm for linear-in-theparameters nonlinear model identification
    PingKang Li
    TaoTao Jin
    XiuXia Du
    Science in China Series F: Information Sciences, 2009, 52 : 1739 - 1745
  • [36] Particle filters for recursive model selection in linear and nonlinear system identification
    Kadirkamanathan, V
    Jaward, MH
    Fabri, SG
    Kadirkamanathan, M
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 2391 - 2396
  • [37] Simple recursive algorithm for linear-in-theparameters nonlinear model identification
    Li PingKang
    Jin TaoTao
    Du XiuXia
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (10): : 1739 - 1745
  • [38] State-space model identification of deterministic nonlinear systems: Nonlinear mapping technology and application of the Lyapunov theory
    Lyshevski, SE
    AUTOMATICA, 1998, 34 (05) : 659 - 664
  • [39] Recursive identification of state space systems with coloured process noise and measurement noise
    Zhu, Fang
    Wang, Xuehai
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2021, 67 (2-3) : 129 - 140
  • [40] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145