Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers

被引:34
|
作者
Kim, T. K. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
D O I
10.1134/S1061920823010041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate Stirling numbers of both kinds associated with degenerate hyperharmonic numbers and also with degenerate Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials.
引用
收藏
页码:62 / 75
页数:14
相关论文
共 50 条
  • [21] DEGENERATE WEIGHTED STIRLING NUMBERS
    HOWARD, FT
    DISCRETE MATHEMATICS, 1985, 57 (1-2) : 45 - 58
  • [22] Study on degenerate Stirling numbers
    San Kim, Dae
    Kim, Taekyun
    Kwon, Jongkyum
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 1 - 10
  • [23] On Degenerate Simsek and Stirling Numbers
    Oussi, Lahcen
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (05)
  • [24] Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials
    Won Joo Kim
    Dae San Kim
    Han Young Kim
    Taekyun Kim
    Journal of Inequalities and Applications, 2019
  • [25] Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials
    Kim, Won Joo
    Kim, Dae San
    Kim, Han Young
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [26] Some identities involving Bernoulli and Stirling numbers
    Shirai, S
    Sato, K
    JOURNAL OF NUMBER THEORY, 2001, 90 (01) : 130 - 142
  • [27] Combinatorial identities involving degenerate harmonic and hyperharmonic numbers
    Kim, Taekyun
    Kim, Dae San
    ADVANCES IN APPLIED MATHEMATICS, 2023, 148
  • [28] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [29] Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol-Bernoulli Polynomials and Numbers, and Degenerate Apostol-Euler Polynomials and Numbers
    Jin, Siqintuya
    Dagli, Muhammet Cihat
    Qi, Feng
    AXIOMS, 2022, 11 (09)
  • [30] Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials
    Lee, Jeong Gon
    Kim, Wonjoo
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2019, 11 (05):