MS-UNet: Swin Transformer U-Net with Multi-scale Nested Decoder for Medical Image Segmentation with Small Training Data

被引:0
|
作者
Chen, Haoyuan [1 ]
Han, Yufei [1 ]
Li, Yanyi [1 ]
Xu, Pin [1 ]
Li, Kuan [1 ]
Yin, Jianping [1 ]
机构
[1] Dongguan Univ Technol, Dongguan, Peoples R China
关键词
Medical Image Segmentation; U-Net; Swin Transformer; Multi-scale Nested Decoder;
D O I
10.1007/978-981-99-8558-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel U-Net model named MS-UNet for the medical image segmentation task in this study. Instead of the single-layer U-Net decoder structure used in Swin-UNet and TransUnet, we specifically design a multi-scale nested decoder based on the Swin Transformer for U-Net. The new framework is proposed based on the observation that the single-layer decoder structure of U-Net is too "thin" to exploit enough information, resulting in large semantic differences between the encoder and decoder parts. Things get worse if the number of training sets of data is not sufficiently large, which is common in medical image processing tasks where annotated data are more difficult to obtain than other tasks. Overall, the proposed multi-scale nested decoder structure allows the feature mapping between the decoder and encoder to be semantically closer, thus enabling the network to learn more detailed features. Experiment results show that MS-UNet could effectively improve the network performance with more efficient feature learning capability and exhibit more advanced performance, especially in the extreme case with a small amount of training data. The code is publicly available at: https:// github.com/HH446/MS- UNet.
引用
下载
收藏
页码:472 / 483
页数:12
相关论文
共 50 条
  • [21] MSGU-Net: a lightweight multi-scale ghost U-Net for image segmentation
    Cheng, Hua
    Zhang, Yang
    Xu, Huangxin
    Li, Dingliang
    Zhong, Zejian
    Zhao, Yinchuan
    Yan, Zhuo
    Frontiers in Neurorobotics, 2024, 18
  • [22] Multi-scale-ResUNet: an improve u-net with multi-scale attention and hybrid dilation for medical image segmentation
    Tao Jin
    Zhen Wang
    Multimedia Tools and Applications, 2023, 82 : 28473 - 28492
  • [23] Multi-scale-ResUNet: an improve u-net with multi-scale attention and hybrid dilation for medical image segmentation
    Jin, Tao
    Wang, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 28473 - 28492
  • [24] MDAN-UNet: Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images
    Liu, Wen
    Sun, Yankui
    Ji, Qingge
    ALGORITHMS, 2020, 13 (03)
  • [25] MS-UNet: A multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images
    Kushnure, Devidas T.
    Talbar, Sanjay N.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 89
  • [26] MSF-TransUNet: A Multi-Scale Feature Fusion Transformer-Based U-Net for Medical Image Segmentation with Uniform Attention
    Jiang, Ying
    Gong, Lejun
    Huang, Hao
    Qi, Mingming
    Traitement du Signal, 2025, 42 (01) : 531 - 540
  • [27] Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
    Lu, Haoran
    She, Yifei
    Tie, Jun
    Xu, Shengzhou
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [28] MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation
    Jiawei Zhang
    Yanchun Zhang
    Yuzhen Jin
    Jilan Xu
    Xiaowei Xu
    Health Information Science and Systems, 11
  • [29] MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation
    Zhang, Jiawei
    Zhang, Yanchun
    Jin, Yuzhen
    Xu, Jilan
    Xu, Xiaowei
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [30] MSCT-UNET: multi-scale contrastive transformer within U-shaped network for medical image segmentation
    Xi, Heran
    Dong, Haoji
    Sheng, Yue
    Cui, Hui
    Huang, Chengying
    Li, Jinbao
    Zhu, Jinghua
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01):