MSGU-Net: a lightweight multi-scale ghost U-Net for image segmentation

被引:0
|
作者
Cheng, Hua [1 ]
Zhang, Yang [1 ]
Xu, Huangxin [2 ,3 ]
Li, Dingliang [1 ]
Zhong, Zejian [1 ]
Zhao, Yinchuan [1 ]
Yan, Zhuo [2 ]
机构
[1] Chengdu Civil Aviat Informat Technol Co Ltd, Chengdu, Peoples R China
[2] Shenyang Aerosp Univ, Coll Artificial Intelligence, Shenyang, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
来源
关键词
image segmentation; U-Net; lightweight neural network; SPP-Inception; multi-scale; CONNECTIONS;
D O I
10.3389/fnbot.2024.1480055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
U-Net and its variants have been widely used in the field of image segmentation. In this paper, a lightweight multi-scale Ghost U-Net (MSGU-Net) network architecture is proposed. This can efficiently and quickly process image segmentation tasks while generating high-quality object masks for each object. The pyramid structure (SPP-Inception) module and ghost module are seamlessly integrated in a lightweight manner. Equipped with an efficient local attention (ELA) mechanism and an attention gate mechanism, they are designed to accurately identify the region of interest (ROI). The SPP-Inception module and ghost module work in tandem to effectively merge multi-scale information derived from low-level features, high-level features, and decoder masks at each stage. Comparative experiments were conducted between the proposed MSGU-Net and state-of-the-art networks on the ISIC2017 and ISIC2018 datasets. In short, compared to the baseline U-Net, our model achieves superior segmentation performance while reducing parameter and computation costs by 96.08 and 92.59%, respectively. Moreover, MSGU-Net can serve as a lightweight deep neural network suitable for deployment across a range of intelligent devices and mobile platforms, offering considerable potential for widespread adoption.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lightweight Multi-Scale Dilated U-Net for Crop Disease Leaf Image Segmentation
    Xu, Cong
    Yu, Changqing
    Zhang, Shanwen
    ELECTRONICS, 2022, 11 (23)
  • [2] MUNet: A Multi-scale U-Net Framework for Medical Image Segmentation
    Zhang, Wentao
    Cheng, Hao
    Gan, Jun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation
    Jiawei Zhang
    Yanchun Zhang
    Yuzhen Jin
    Jilan Xu
    Xiaowei Xu
    Health Information Science and Systems, 11
  • [4] MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation
    Zhang, Jiawei
    Zhang, Yanchun
    Jin, Yuzhen
    Xu, Jilan
    Xu, Xiaowei
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [5] DCU-Net: Multi-scale U-Net for brain tumor segmentation
    Yang, Tiejun
    Zhou, Yudan
    Li, Lei
    Zhu, Chunhua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (04) : 709 - 726
  • [6] MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation
    Su, Run
    Zhang, Deyun
    Liu, Jinhuai
    Cheng, Chuandong
    FRONTIERS IN GENETICS, 2021, 12
  • [7] Multi-Scale Fusion U-Net for the Segmentation of Breast Lesions
    Li, Jingyao
    Cheng, Lianglun
    Xia, Tingjian
    Ni, Haomin
    Li, Jiao
    IEEE ACCESS, 2021, 9 : 137125 - 137139
  • [8] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Fan, Tongle
    Wang, Guanglei
    Wang, Xia
    Li, Yan
    Wang, Hongrui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1089 - 1097
  • [9] GA-UNet: A Lightweight Ghost and Attention U-Net for Medical Image Segmentation
    Pang, Bo
    Chen, Lianghong
    Tao, Qingchuan
    Wang, Enhui
    Yu, Yanmei
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (04): : 1874 - 1888
  • [10] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Tongle Fan
    Guanglei Wang
    Xia Wang
    Yan Li
    Hongrui Wang
    Signal, Image and Video Processing, 2021, 15 : 1089 - 1097