Unsupervised clustering using nonparametric finite mixture models

被引:0
|
作者
Hunter, David R. R. [1 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
关键词
EM algorithm; kernel density estimation; semiparametric mixture; MAXIMUM SMOOTHED LIKELIHOOD; SEMIPARAMETRIC ESTIMATION; COMPONENTS; NUMBER;
D O I
10.1002/wics.1632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents basic ideas of finite mixture models in which the number of components is known and the distributions comprising the components are not assumed to come from any parametrically specified family.This article is categorized under:Algorithms and Computational Methods > AlgorithmsStatistical Learning and Exploratory Methods of the Data Sciences > Clustering and ClassificationStatistical and Graphical Methods of Data Analysis > Nonparametric MethodsStatistical Models > Classification Models
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions
    Fan, Wentao
    Bouguila, Nizar
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3193 - 3203
  • [32] mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
    Scrucca, Luca
    Fop, Michael
    Murphy, T. Brendan
    Raftery, Adrian E.
    [J]. R JOURNAL, 2016, 8 (01): : 289 - 317
  • [33] Data Clustering using Online Variational Learning of Finite Scaled Dirichlet Mixture Models
    Nguyen, Hieu
    Kalra, Meeta
    Azam, Muhammad
    Bouguila, Nizar
    [J]. 2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 267 - 274
  • [34] Segmental modeling using a continuous mixture of nonparametric models
    Goldberger, J
    Burshtein, D
    Franco, H
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (03): : 262 - 271
  • [35] Superpixel-Based Unsupervised Classification of PolSAR Imagery Using Wishart Mixture Models and Spectral Clustering
    Yang, Xiangli
    Yang, Wen
    Song, Hui
    Huang, Pingping
    [J]. 11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 1228 - 1231
  • [36] An unsupervised learning algorithm for image segmentation based on finite mixture models
    Yu, LS
    Zhang, TW
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 101 - 104
  • [37] On the distribution of posterior probabilities in finite mixture models with application in clustering
    Melnykov, Volodymyr
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 122 : 175 - 189
  • [38] Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson's disease
    White, Nicole
    Johnson, Helen
    Silburn, Peter
    Mengersen, Kerrie
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (11) : 2363 - 2377
  • [39] Simultaneous estimation and clustering with finite mixture of nonparanormal graphical models
    Aghabozorgi, Hamid Haji
    Eskandari, Farzad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [40] Identifying connected components in Gaussian finite mixture models for clustering
    Scrucca, Luca
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 5 - 17