From p-Wasserstein bounds to moderate deviations

被引:2
|
作者
Fang, Xiao [1 ]
Koike, Yuta [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2023年 / 28卷
关键词
central limit theorem; Cramer-type moderate deviations; multivariate normal ap; proximation; p -Wasserstein distance; Stein's method; MULTIVARIATE NORMAL APPROXIMATION; CENTRAL-LIMIT-THEOREM; STEINS METHOD; INEQUALITIES; CONVERGENCE; ENTROPY; SUMS;
D O I
10.1214/23-EJP976
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a new method via p-Wasserstein bounds to prove Cramer-type moderate deviations in (multivariate) normal approximations. In the classical setting that W is a standardized sum of n independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of 0 x = o(n1/6) and the near optimal error rate O(1)(1+x)(log n+x2)/A/n for P(W > x)/(1- & phi; (x)) & RARR; 1, where & phi; is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the p-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like O(p & alpha;& UDelta;), 1 p p0, for some constants & alpha;, & UDelta; and p0. In the above i.i.d. setting, & alpha; = 1, & UDelta; = 1/A/n, p0 = n1/3. For this purpose, we obtain general p-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
引用
收藏
页数:52
相关论文
共 50 条
  • [41] DELTA METHOD IN LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR ESTIMATORS
    Gao, Fuqing
    Zhao, Xingqiu
    ANNALS OF STATISTICS, 2011, 39 (02): : 1211 - 1240
  • [42] Moderate Deviations and Large Deviations for Kernel Density Estimators
    Fuqing Gao
    Journal of Theoretical Probability, 2003, 16 : 401 - 418
  • [43] Cramér Moderate Deviations and Berry-Esseen Bounds for Mandelbrot’s Cascade in a Random Environment
    Yingqiu Li
    Peihan Li
    Yushao Wei
    Methodology and Computing in Applied Probability, 2025, 27 (2)
  • [44] Generalization error bounds using Wasserstein distances
    Lopez, Adrian Tovar
    Jog, Varun
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 205 - 209
  • [45] Moderate Deviations via Cumulants
    Doering, Hanna
    Eichelsbacher, Peter
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (02) : 360 - 385
  • [46] MODERATE DEVIATIONS FOR INTERACTING PROCESSES
    Del Moral, Pierre
    Hu, Shulan
    Wu, Liming
    STATISTICA SINICA, 2015, 25 (03) : 921 - 951
  • [47] Moderate deviations for stationary processes
    Wu, Wei Biao
    Zhao, Zhibiao
    STATISTICA SINICA, 2008, 18 (02) : 769 - 782
  • [48] Moderate deviations of empirical processes
    Arcones, MA
    STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 189 - 212
  • [49] Moderate deviations for a class of recursions
    Wang, Shaochen
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2348 - 2352
  • [50] Moderate Deviations in Channel Coding
    Altug, Yucel
    Wagner, Aaron B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 4417 - 4426