Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots

被引:33
|
作者
Liu, Yuan [1 ]
Lin, Gungun [4 ]
Medina-Sanchez, Mariana [5 ,6 ]
Guix, Maria [2 ]
Makarov, Denys [3 ]
Jin, Dayong [4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Univ Barcelona, Inst Quim Teor & Barcelona, Dept Ciencia Mat & Quim Fis, Barcelona 08028, Spain
[3] Helmholtz Zentrum Dresden Rossendorf eV, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[4] Univ Technol Sydney, Inst Biomed Mat & Devices, Fac Sci, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
[5] Leibniz Inst Solid State & Mat Res IFW, Inst Integrat Nanosci, Micro & NanoBiomed Engn Grp MNBE, D-01069 Dresden, Germany
[6] Tech Univ Dresden, Chair Micro & NanoSyst, Ctr Mol Bioengn B CUBE, D-01062 Dresden, Germany
基金
欧洲研究理事会; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Magnetic nanocomposites; Shape-morphing; Microrobots; Magnetic reconfigurability; Stimuli-responsive materials; Scalable manufacturing approaches; Soft materials; Biomedical and bioengineering applications; SOFT; STIFFNESS; MICROMOTORS; HYDROGELS; DESIGN; ROBOTS;
D O I
10.1021/acsnano.3c01609
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer- particle nanocomposites that led to the development of smart shapemorphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
引用
收藏
页码:8899 / 8917
页数:19
相关论文
共 50 条
  • [21] Nanomagnetic encoding of shape-morphing micromachines
    Jizhai Cui
    Tian-Yun Huang
    Zhaochu Luo
    Paolo Testa
    Hongri Gu
    Xiang-Zhong Chen
    Bradley J. Nelson
    Laura J. Heyderman
    Nature, 2019, 575 : 164 - 168
  • [22] Nanomagnetic encoding of shape-morphing micromachines
    Cui, Jizhai
    Huang, Tian-Yun
    Luo, Zhaochu
    Testa, Paolo
    Gu, Hongri
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Heyderman, Laura J.
    NATURE, 2019, 575 (7781) : 164 - +
  • [23] Shape-Morphing Chromonic Liquid Crystal Hydrogels
    Kularatne, Ruvini S.
    Kim, Hyun
    Ammanamanchi, Manasvini
    Hayenga, Heather N.
    Ware, Taylor H.
    CHEMISTRY OF MATERIALS, 2016, 28 (23) : 8489 - 8492
  • [24] Chemically controlled shape-morphing of elastic sheets
    Manna, Raj Kumar
    Shklyaev, Oleg E.
    Stone, Howard A.
    Balazs, Anna C.
    MATERIALS HORIZONS, 2020, 7 (09) : 2314 - 2327
  • [25] Digital printing of shape-morphing natural materials
    Zhao, Ze
    Kumar, Jatin
    Hwang, Youngkyu
    Deng, Jingyu
    Bin Ibrahim, Mohammed Shahrudin
    Huang, Changjin
    Suresh, Subra
    Cho, Nam-Joon
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (43)
  • [26] Shape-Morphing Liquid-Crystal polymers
    Zhang, Dachuan
    Yuan, Chenrui
    Zhou, Yang
    Wu, Si
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (40)
  • [27] Agile reversible shape-morphing of particle rafts
    Son, Kyungmin
    Sun, Jeong-Yun
    Kim, Ho-Young
    SOFT MATTER, 2021, 17 (32) : 7554 - 7564
  • [28] Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes
    Kim, Minsoo
    Kim, Donghoon
    Mirjolet, Mathieu
    Shepelin, Nick A.
    Lippert, Thomas
    Choi, Hongsoo
    Puigmarti-Luis, Josep
    Nelson, Bradley J.
    Chen, Xiang-Zhong
    Pane, Salvador
    ADVANCED MATERIALS, 2024, 36 (47)
  • [29] Shape-morphing architectures actuated by Janus fibers
    Zakharov, Andrei
    Pismen, Len M.
    Ionov, Leonid
    SOFT MATTER, 2020, 16 (08) : 2086 - 2092
  • [30] Shape-morphing structures based on perforated kirigami
    Zhang, Yunlan
    Yang, Jingyi
    Liu, Mingchao
    Vella, Dominic
    EXTREME MECHANICS LETTERS, 2022, 56