Machine learning interpretability meets TLS fingerprinting

被引:0
|
作者
Siavoshani, Mahdi Jafari [1 ]
Khajehpour, Amirhossein [1 ]
Bideh, Amirmohammad Ziaei [1 ]
Gatmiri, Amirali [1 ]
Taheri, Ali [1 ]
机构
[1] Sharif Univ Technol, Comp Sci & Engn Dept, Informat Network & Learning Lab INL, Tehran, Iran
关键词
Web fingerprinting; Transport layer security (TLS); Information leakage; Deep learning; Model interpretation; TRAFFIC CLASSIFICATION; NEURAL-NETWORKS;
D O I
10.1007/s00500-023-07949-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Protecting users' privacy over the Internet is of great importance; however, it becomes harder and harder to maintain due to the increasing complexity of network protocols and components. Therefore, investigating and understanding how data are leaked from the information transmission platforms and protocols can lead us to a more secure environment. In this paper, we propose a framework to systematically find the most vulnerable information fields in a network protocol. To this end, focusing on the transport layer security (TLS) protocol, we perform different machine-learning-based fingerprinting attacks on the collected data from more than 70 domains (websites) to understand how and where this information leakage occurs in the TLS protocol. Then, by employing the interpretation techniques developed in the machine learning community and applying our framework, we find the most vulnerable information fields in the TLS protocol. Our findings demonstrate that the TLS handshake (which is mainly unencrypted), the TLS record length appearing in the TLS application data header, and the IV field are among the most critical leaker parts in this protocol, respectively.
引用
收藏
页码:7191 / 7208
页数:18
相关论文
共 50 条
  • [31] Can Omics Help in Prognostic Machine Learning Interpretability?
    Uche, C. Z.
    Caruana, R.
    Lee, S. H.
    Geng, H.
    Wright, C. M.
    Xiao, Y.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E124 - E125
  • [32] Survey on Techniques, Applications and Security of Machine Learning Interpretability
    Ji S.
    Li J.
    Du T.
    Li B.
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (10): : 2071 - 2096
  • [33] Machine Learning Reimagined: The Promise of Interpretability to Combat Bias
    Maurer, Lydia R.
    Bertsimas, Dimitris
    Kaafarani, Haytham M. A.
    [J]. ANNALS OF SURGERY, 2022, 275 (06) : E738 - E739
  • [34] Blockchain meets machine learning: a survey
    Kayikci, Safak
    Khoshgoftaar, Taghi M.
    [J]. JOURNAL OF BIG DATA, 2024, 11 (01)
  • [35] Machine learning meets genome assembly
    de Souza, Kleber Padovani
    Setubal, Joao Carlos
    de Carvalho, Andre Carlos Ponce de Leon F.
    Oliveira, Guilherme
    Chateau, Annie
    Alves, Ronnie
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2116 - 2129
  • [36] Quantum Chemistry Meets Machine Learning
    Fabrizio, Alberto
    Meyer, Benjamin
    Fabregat, Raimon
    Corminboeuf, Clemence
    [J]. CHIMIA, 2019, 73 (12) : 983 - 989
  • [37] Machine Learning meets Kalman Filtering
    Carron, Andrea
    Todescato, Marco
    Carli, Ruggero
    Schenato, Luca
    Pillonetto, Gianluigi
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4594 - 4599
  • [38] Molecular Simulation Meets Machine Learning
    Sadus, Richard
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2023, 69 (01): : 3 - 11
  • [39] Stratified Sampling Meets Machine Learning
    Lang, Kevin
    Liberty, Edo
    Shmakov, Konstantin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [40] MACHINE LEARNING meets QUANTUM PHYSICS
    Das Sarma, Sankar
    Deng, Dong-Ling
    Duan, Lu-Ming
    [J]. PHYSICS TODAY, 2019, 72 (03) : 48 - 54