Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring

被引:4
|
作者
Wang, Haijie [1 ]
Li, Bo [1 ,2 ,3 ]
Zhang, Saifan [1 ]
Xuan, Fuzhen [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[2] Shanghai Collaborat Innovat Ctr High End Equipment, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Addit Mfg & Intelligent Equipment Res Inst, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Laser powder bed fusion; Machine learning; Deep learning; Near-infrared imaging; Melt pool; Additive manufacturing;
D O I
10.1007/s10845-024-02356-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intricate non-equilibrium and rapid solidification behavior inherent in laser powder bed fusion (LPBF) additive manufacturing affects the quality and performance of as-built parts. To evaluate and predict the quality of LPBF-built parts, engaging in real-time monitoring of the LPBF process by leveraging thermal information derived from the melt pool becomes significant. In this work, the insights conveyed by near-infrared (NIR) thermal-imaging on melt pools during the LPBF process were explored, with the assistance of machine learning (ML) and deep learning (DL) methods, aiming to develop ML and DL models capable of recognizing NIR melt-pool monitoring images and predicting invisible geometries of laser-tracks. Traditional ML models, including support vector machines, were used to establish a non-linear mapping relationship between NIR thermal images and cross-sectional geometries of solidified laser-tracks. That was achieved by extracting melt-pool NIR image features based on prior knowledge while analyzing the influence of laser parameters on the melt pools. Then, DL models such as convolutional neural networks were improved to extract multi-scale features from the melt-pool thermal images through self-learning mechanisms. By comprehensively merging multi-scale features, these DL models effectively captured and reflected vital NIR image information from the melt pool. The various methodologies collectively provided real-time insights for monitoring and controlling the LPBF processes, thereby facilitating reasoning about and predicting imperceptible geometries of the cross-sectional solidified laser-tracks within the as-built parts.
引用
收藏
页码:2079 / 2104
页数:26
相关论文
共 50 条
  • [21] Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
    Scime, Luke
    Beuth, Jack
    ADDITIVE MANUFACTURING, 2019, 25 : 151 - 165
  • [22] Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing
    Gaikwad, Aniruddha
    Williams, Richard J.
    de Winton, Harry
    Bevans, Benjamin D.
    Smoqi, Ziyad
    Rao, Prahalada
    Hooper, Paul A.
    MATERIALS & DESIGN, 2022, 221
  • [23] Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process
    Scime, Luke
    Beuth, Jack
    ADDITIVE MANUFACTURING, 2019, 29
  • [24] PREDICTING MICROSTRUCTURE EVOLUTION IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING USING PHYSICS-BASED MACHINE LEARNING
    Riensche, Alexander
    Bevans, Benjamin
    King, Grant
    Krishnan, Ajay
    Cole, Kevin
    Rao, Prahalada
    PROCEEDINGS OF ASME 2024 19TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2024, VOL 1, 2024,
  • [25] Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718
    Kappes, Branden
    Moorthy, Senthamilaruvi
    Drake, Dana
    Geerlings, Henry
    Stebner, Aaron
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON SUPERALLOY 718 & DERIVATIVES: ENERGY, AEROSPACE, AND INDUSTRIAL APPLICATIONS, 2018, : 595 - 610
  • [26] CAMERA-BASED COAXIAL MELT POOL MONITORING DATA REGISTRATION FOR LASER POWDER BED FUSION ADDITIVE MANUFACTURING
    Lu, Yan
    Yang, Zhuo
    Kim, Jaehyuk
    Cho, Hyunbo
    Yeung, Ho
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 2B, 2020,
  • [27] Probabilistic Data-Driven Modeling of a Melt Pool in Laser Powder Bed Fusion Additive Manufacturing
    Fang, Qihang
    Xiong, Gang
    Zhao, Meihua
    Tamir, Tariku Sinshaw
    Shen, Zhen
    Yan, Chao-Bo
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [28] A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing
    Huang, De Jun
    Li, Hua
    MATERIALS & DESIGN, 2021, 203
  • [29] A deep learning framework for defect prediction based on thermographic in-situ monitoring in laser powder bed fusion
    Oster, Simon
    Breese, Philipp P. P.
    Ulbricht, Alexander
    Mohr, Gunther
    Altenburg, Simon J. J.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (04) : 1687 - 1706
  • [30] A deep learning framework for defect prediction based on thermographic in-situ monitoring in laser powder bed fusion
    Simon Oster
    Philipp P. Breese
    Alexander Ulbricht
    Gunther Mohr
    Simon J. Altenburg
    Journal of Intelligent Manufacturing, 2024, 35 : 1687 - 1706