Parameter estimation with reluctant quantum walks: a maximum likelihood approach

被引:0
|
作者
Ellinas, Demosthenes [1 ,3 ]
Jarvis, Peter D. [2 ]
Pearce, Matthew [2 ]
机构
[1] Tech Univ Crete, Sch ECE QLab, Khania, Greece
[2] Univ Tasmania, Sch Nat Sci, Hobart, Tas, Australia
[3] Monash Univ, Sch Phys & Astron, Clayton, Vic, Australia
关键词
quantum walk; analytic solution; quantum estimation; mamimum likelihood; quantum channel;
D O I
10.1088/1402-4896/ad19ff
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parametric maximum likelihood estimation problem is addressed in the context of quantum walk theory for quantum walks on the lattice of integers. A coin action is presented, with the real parameter theta to be estimated identified with the angular argument of an orthogonal reshuffling matrix. We provide analytic results for the probability distribution for a quantum walker to be displaced by d units from its initial position after k steps. For k large, we show that the likelihood is sharply peaked at a displacement determined by the ratio d/k which is correlated with the reshuffling parameter theta. We suggest that this 'reluctant walker' behaviour provides the framework for maximum likelihood estimation analysis, allowing for robust parameter estimation of theta via return probabilities of closed evolution loops and quantum measurements of the position of quantum walker with 'reluctance index' r = d/k.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Parameter estimation of the macroscopic fundamental diagram: A maximum likelihood approach
    Aghamohammadi, Rafegh
    Laval, Jorge A.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 140
  • [3] Approximated maximum likelihood estimation in multifractal random walks
    Lovsletten, O.
    Rypdal, M.
    [J]. PHYSICAL REVIEW E, 2012, 85 (04):
  • [4] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [5] ELM parameter estimation in view of maximum likelihood
    Yang, Lanzhen
    Tsang, Eric C. C.
    Wang, Xizhao
    Zhang, Chengling
    [J]. NEUROCOMPUTING, 2023, 557
  • [6] Maximum likelihood estimation for the Erlang integer parameter
    Miller, GK
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 43 (04) : 335 - 341
  • [7] On maximum likelihood estimation of the binomial parameter n
    Gupta, AK
    Nguyen, TT
    Wang, YN
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03): : 599 - 606
  • [8] A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations
    Sun, Libo
    Lee, Chihoon
    Hoeting, Jennifer A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 54 - 67
  • [9] Hedged Maximum Likelihood Quantum State Estimation
    Blume-Kohout, Robin
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (20)
  • [10] Maximum-likelihood method in quantum estimation
    Paris, MGA
    D'Ariano, GM
    Sacchi, MF
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 456 - 467