Hedged Maximum Likelihood Quantum State Estimation

被引:72
|
作者
Blume-Kohout, Robin [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
D O I
10.1103/PhysRevLett.105.200504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter proposes and analyzes a new method for quantum state estimation, called hedged maximum likelihood (HMLE). HMLE is a quantum version of Lidstone's law, also known as the "add beta" rule. A straightforward modification of maximum likelihood estimation (MLE), it can be used as a plug-in replacement for MLE. The HMLE estimate is a strictly positive density matrix, slightly less likely than the ML estimate, but with much better behavior for predictive tasks. Single-qubit numerics indicate that HMLE beats MLE, according to several metrics, for nearly all "true" states. For nearly pure states, MLE does slightly better, but neither method is optimal.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] LOCAL SOLUTIONS OF MAXIMUM LIKELIHOOD ESTIMATION IN QUANTUM STATE TOMOGRAPHY
    Goncalves, Douglas S.
    Gomes-Ruggiero, Marcia A.
    Lavor, Carlile
    Jimenez Farias, Osvaldo
    Souto Ribeiro, P. H.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2012, 12 (9-10) : 775 - 790
  • [2] Maximum-likelihood method in quantum estimation
    Paris, MGA
    D'Ariano, GM
    Sacchi, MF
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 456 - 467
  • [3] On the Mortensen equation for maximum likelihood state estimation
    Aihara, SI
    Bagchi, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (10) : 1955 - 1961
  • [4] Behavior of the maximum likelihood in quantum state tomography
    Scholten, Travis L.
    Blume-Kohout, Robin
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [5] Event-triggered maximum likelihood state estimation
    Shi, Dawei
    Chen, Tongwen
    Shi, Ling
    [J]. AUTOMATICA, 2014, 50 (01) : 247 - 254
  • [6] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281
  • [7] A scalable maximum likelihood method for quantum state tomography
    Baumgratz, T.
    Nuesseler, A.
    Cramer, M.
    Plenio, M. B.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [8] Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood
    殷琪
    项国勇
    李传锋
    郭光灿
    [J]. Chinese Physics Letters, 2017, 34 (03) : 7 - 11
  • [9] Amplitude estimation via maximum likelihood on noisy quantum computer
    Tomoki Tanaka
    Yohichi Suzuki
    Shumpei Uno
    Rudy Raymond
    Tamiya Onodera
    Naoki Yamamoto
    [J]. Quantum Information Processing, 2021, 20
  • [10] Quantum Multi-Programming for Maximum Likelihood Amplitude Estimation
    Rao, Pooja
    Choi, Sua
    Yu, Kwangmin
    [J]. QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911