Parameter estimation with reluctant quantum walks: a maximum likelihood approach

被引:0
|
作者
Ellinas, Demosthenes [1 ,3 ]
Jarvis, Peter D. [2 ]
Pearce, Matthew [2 ]
机构
[1] Tech Univ Crete, Sch ECE QLab, Khania, Greece
[2] Univ Tasmania, Sch Nat Sci, Hobart, Tas, Australia
[3] Monash Univ, Sch Phys & Astron, Clayton, Vic, Australia
关键词
quantum walk; analytic solution; quantum estimation; mamimum likelihood; quantum channel;
D O I
10.1088/1402-4896/ad19ff
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parametric maximum likelihood estimation problem is addressed in the context of quantum walk theory for quantum walks on the lattice of integers. A coin action is presented, with the real parameter theta to be estimated identified with the angular argument of an orthogonal reshuffling matrix. We provide analytic results for the probability distribution for a quantum walker to be displaced by d units from its initial position after k steps. For k large, we show that the likelihood is sharply peaked at a displacement determined by the ratio d/k which is correlated with the reshuffling parameter theta. We suggest that this 'reluctant walker' behaviour provides the framework for maximum likelihood estimation analysis, allowing for robust parameter estimation of theta via return probabilities of closed evolution loops and quantum measurements of the position of quantum walker with 'reluctance index' r = d/k.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] MAXIMUM LIKELIHOOD ESTIMATION OF A TRANSLATION PARAMETER OF A TRUNCATED DISTRIBUTION
    WEISS, L
    WOLFOWIT.J
    ANNALS OF STATISTICS, 1973, 1 (05): : 944 - 947
  • [22] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [23] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281
  • [24] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [25] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710
  • [26] A heterogeneous computing approach to maximum likelihood parameter estimation for the Heston model of stochastic volatility
    Hurn, A. S.
    Lindsay, K. A.
    Warne, D. J.
    ANZIAM JOURNAL, 2015, 57 : C364 - C381
  • [27] Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach
    Verboven, P
    Parloo, E
    Guillaume, P
    Van Overmeire, M
    PROCEEDINGS OF IMAC-XIX: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, 2001, 4359 : 1511 - 1517
  • [28] Accurate Parameter Estimation Using a Frequency Domain Maximum Likelihood Approach for SAR Processing
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    PROCEEDINGS OF 2017 7TH IEEE INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION, AND EMC TECHNOLOGIES (MAPE), 2017, : 457 - 461
  • [29] A MAXIMUM LIKELIHOOD APPROACH FOR UNDERDETERMINED TDOA ESTIMATION
    Cho, Janghoon
    Yoo, Chang D.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4001 - 4005
  • [30] A simple approach to maximum intractable likelihood estimation
    Rubio, F. J.
    Johansen, Adam M.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1632 - 1654