Square roots of complex symmetric operators

被引:0
|
作者
Jo, Munsun [1 ]
Ko, Eungil [1 ]
Lee, Ji Eun [2 ,3 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul, South Korea
[2] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 18期
基金
新加坡国家研究基金会;
关键词
Square roots of complex symmetric operators; the single-valued extension property; the Bishop's property (beta); the Dunford's property (C); the dunford's boundedness condition (B); nontrivial invariant subspace;
D O I
10.1080/03081087.2022.2146041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study square roots of complex symmetric operators. In particular, we prove that if $ T{\in {\mathcal L}(\mathcal H)} $ T & ISIN;L(H) is a square root of a complex symmetric operator, then $ T<^>{\ast } $ T* has the single-valued extension property if and only if so does T. Moreover, in this case, T has the Bishop's property $ (\beta ) $ (beta) if and only if T is decomposable. Finally, we show that if T has a nontrivial hyperinvariant subspace, then $ T<^>{\ast } $ T* has a nontrivial invariant subspace.
引用
收藏
页码:3013 / 3024
页数:12
相关论文
共 50 条
  • [31] On complex symmetric Toeplitz operators
    Ko, Eungil
    Lee, Ji Eun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 20 - 34
  • [32] Remarks on Complex Symmetric Operators
    Sungeun Jung
    Eungil Ko
    Ji Eun Lee
    Mediterranean Journal of Mathematics, 2016, 13 : 719 - 728
  • [33] Complex Symmetric Toeplitz Operators
    Bu, Qinggang
    Chen, Yong
    Zhu, Sen
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (02)
  • [34] PROPERTIES OF COMPLEX SYMMETRIC OPERATORS
    Jung, Sungeun
    Ko, Eungil
    Lee, Ji Eun
    OPERATORS AND MATRICES, 2014, 8 (04): : 957 - 974
  • [35] Complex Symmetric Toeplitz Operators
    Qinggang Bu
    Yong Chen
    Sen Zhu
    Integral Equations and Operator Theory, 2021, 93
  • [36] Approximation of complex symmetric operators
    Sen Zhu
    Mathematische Annalen, 2016, 364 : 373 - 399
  • [37] Remarks on Complex Symmetric Operators
    Jung, Sungeun
    Ko, Eungil
    Lee, Ji Eun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 719 - 728
  • [38] Complex symmetric operators and interpolation
    Mleczko, Pawel
    Szwedek, Radoslaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 210 - 215
  • [39] Crystal complex symmetric operators
    Eungil Ko
    Ji Eun Lee
    Mee-Jung Lee
    Banach Journal of Mathematical Analysis, 2020, 14 : 1711 - 1727
  • [40] Square roots of perturbed subelliptic operators on Lie groups
    Bandara, Lashi
    ter Elst, A. F. M.
    McIntosh, Alan
    STUDIA MATHEMATICA, 2013, 216 (03) : 193 - 217