Square roots of complex symmetric operators

被引:0
|
作者
Jo, Munsun [1 ]
Ko, Eungil [1 ]
Lee, Ji Eun [2 ,3 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul, South Korea
[2] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 18期
基金
新加坡国家研究基金会;
关键词
Square roots of complex symmetric operators; the single-valued extension property; the Bishop's property (beta); the Dunford's property (C); the dunford's boundedness condition (B); nontrivial invariant subspace;
D O I
10.1080/03081087.2022.2146041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study square roots of complex symmetric operators. In particular, we prove that if $ T{\in {\mathcal L}(\mathcal H)} $ T & ISIN;L(H) is a square root of a complex symmetric operator, then $ T<^>{\ast } $ T* has the single-valued extension property if and only if so does T. Moreover, in this case, T has the Bishop's property $ (\beta ) $ (beta) if and only if T is decomposable. Finally, we show that if T has a nontrivial hyperinvariant subspace, then $ T<^>{\ast } $ T* has a nontrivial invariant subspace.
引用
收藏
页码:3013 / 3024
页数:12
相关论文
共 50 条
  • [21] Gradient Estimates for Commutators of Square Roots of Elliptic Operators with Complex Bounded Measurable Coefficients
    Yanping Chen
    Yong Ding
    The Journal of Geometric Analysis, 2017, 27 : 466 - 491
  • [22] Gradient Estimates for Commutators of Square Roots of Elliptic Operators with Complex Bounded Measurable Coefficients
    Chen, Yanping
    Ding, Yong
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 466 - 491
  • [23] On the existence of normal square and nth roots of operators
    Mohammed Hichem Mortad
    The Journal of Analysis, 2020, 28 : 695 - 703
  • [24] On the existence of normal square and nth roots of operators
    Mortad, Mohammed Hichem
    JOURNAL OF ANALYSIS, 2020, 28 (03): : 695 - 703
  • [25] Complex symmetric operators and applications
    Garcia, SR
    Putinar, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) : 1285 - 1315
  • [26] Quasisimilarity to complex symmetric operators
    Zhang, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [27] Crystal complex symmetric operators
    Ko, Eungil
    Lee, Ji Eun
    Lee, Mee-Jung
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (04) : 1711 - 1727
  • [28] Binormal, complex symmetric operators
    Thompson, Derek
    McClatchey, Thaddeus
    Holleman, Caleb
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09): : 1705 - 1715
  • [29] COMPLEX SYMMETRIC TRIANGULAR OPERATORS
    Zhu, Sen
    OPERATORS AND MATRICES, 2015, 9 (02): : 365 - 381
  • [30] Approximation of complex symmetric operators
    Zhu, Sen
    MATHEMATISCHE ANNALEN, 2016, 364 (1-2) : 373 - 399