机构:
Ewha Womans Univ, Dept Math, Seoul, South KoreaEwha Womans Univ, Dept Math, Seoul, South Korea
Jo, Munsun
[1
]
Ko, Eungil
论文数: 0引用数: 0
h-index: 0
机构:
Ewha Womans Univ, Dept Math, Seoul, South KoreaEwha Womans Univ, Dept Math, Seoul, South Korea
Ko, Eungil
[1
]
Lee, Ji Eun
论文数: 0引用数: 0
h-index: 0
机构:
Sejong Univ, Dept Math & Stat, Seoul, South Korea
Sejong Univ, Dept Math & Stat, Seoul 05006, South KoreaEwha Womans Univ, Dept Math, Seoul, South Korea
Lee, Ji Eun
[2
,3
]
机构:
[1] Ewha Womans Univ, Dept Math, Seoul, South Korea
[2] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
Square roots of complex symmetric operators;
the single-valued extension property;
the Bishop's property (beta);
the Dunford's property (C);
the dunford's boundedness condition (B);
nontrivial invariant subspace;
D O I:
10.1080/03081087.2022.2146041
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we study square roots of complex symmetric operators. In particular, we prove that if $ T{\in {\mathcal L}(\mathcal H)} $ T & ISIN;L(H) is a square root of a complex symmetric operator, then $ T<^>{\ast } $ T* has the single-valued extension property if and only if so does T. Moreover, in this case, T has the Bishop's property $ (\beta ) $ (beta) if and only if T is decomposable. Finally, we show that if T has a nontrivial hyperinvariant subspace, then $ T<^>{\ast } $ T* has a nontrivial invariant subspace.
机构:
Brown Univ, Dept Math, Providence, RI 02906 USA
Univ Minnesota, Sch Math, Minneapolis, MN 55455 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Li, Linhan
论文数: 引用数:
h-index:
机构:
Mayboroda, Svitlana
Pipher, Jill
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Math, Providence, RI 02906 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA