Square roots of complex symmetric operators

被引:0
|
作者
Jo, Munsun [1 ]
Ko, Eungil [1 ]
Lee, Ji Eun [2 ,3 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul, South Korea
[2] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[3] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 18期
基金
新加坡国家研究基金会;
关键词
Square roots of complex symmetric operators; the single-valued extension property; the Bishop's property (beta); the Dunford's property (C); the dunford's boundedness condition (B); nontrivial invariant subspace;
D O I
10.1080/03081087.2022.2146041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study square roots of complex symmetric operators. In particular, we prove that if $ T{\in {\mathcal L}(\mathcal H)} $ T & ISIN;L(H) is a square root of a complex symmetric operator, then $ T<^>{\ast } $ T* has the single-valued extension property if and only if so does T. Moreover, in this case, T has the Bishop's property $ (\beta ) $ (beta) if and only if T is decomposable. Finally, we show that if T has a nontrivial hyperinvariant subspace, then $ T<^>{\ast } $ T* has a nontrivial invariant subspace.
引用
收藏
页码:3013 / 3024
页数:12
相关论文
共 50 条