Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation

被引:95
|
作者
Guo, Qingwei [1 ]
Hou, Hua [1 ,3 ]
Pan, Yue [1 ,3 ]
Pei, Xiaolong [1 ]
Song, Zhuo [1 ]
Liaw, Peter K. [5 ]
Zhao, Yuhong [1 ,2 ,4 ]
机构
[1] North Univ China, Sch Mat Sci & Engn, Collaborat Innovat Ctr, Minist Educ & Shanxi Prov High Performance Al Mg A, Taiyuan 030051, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[4] Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA
关键词
High-entropy alloy; Nanoindentation; Hardening-softening; Molecular dynamics; Phase-field-crystal; INCIPIENT PLASTICITY; DEFORMATION; STRAIN; LOOP; CU;
D O I
10.1016/j.matdes.2023.112050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The competition and balance mechanism between work hardening resulting from the surge in disloca-tions and material softening caused by plastic deformation during contact loading in Al0.3CoCrFeNi high-entropy alloy is unclear. The structural transformation and strain localization of Al0.3CoCrFeNi high-entropy alloy during nanoindentation are investigated using molecular dynamics, and the hardening-softening mechanism is discussed. The simulations demonstrate that the prismatic dislocation loop with independent nucleation is discovered for the first time in the [111] orientation. Dislocation multiplication and cross-slip lead to an increase in indentation resistance, resulting in work hardening. Free dislocation slip and dislocation annihilation accommodate plastic strain will reduce indentation resistance, resulting in plastic softening. Twin boundaries can effectively block dislocation propagation, which contributes to hardening. However, twin boundaries cause a softening effect in the later stage of plastic deformation owing to two reasons: (1) the formation of steps and the partial slip where the slip plane and Burgers vector are parallel to the twin boundary, (2) steps and local damage zones in twin boundaries become new nucleation sites for dislocations. The phase-field-crystal method confirms that Al0.3CoCrFeNi high-entropy alloy has the highest hardness when the twin spacing is 2.467 nm.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Selective Laser Melting of Al0.3CoCrFeNi High-Entropy Alloy: Printability, Microstructure, and Mechanical Properties
    Peyrouzet, Florian
    Hachet, Dorian
    Soulas, Romain
    Navone, Christelle
    Godet, Stephane
    Gorsse, Stephane
    JOM, 2019, 71 (10) : 3443 - 3451
  • [32] Additive manufacturing of Al0.3CoCrFeNi high-entropy alloy by powder feeding laser melting deposition
    Peng, Haoping
    Xie, Siyao
    Niu, Pengda
    Zhang, Zhijian
    Yuan, Tiechui
    Ren, Zhiqiang
    Wang, Xiaoming
    Zhao, Yang
    Li, Ruidi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 862
  • [33] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [34] Selective Laser Melting of Al0.3CoCrFeNi High-Entropy Alloy: Printability, Microstructure, and Mechanical Properties
    Florian Peyrouzet
    Dorian Hachet
    Romain Soulas
    Christelle Navone
    Stéphane Godet
    Stéphane Gorsse
    JOM, 2019, 71 : 3443 - 3451
  • [35] High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure
    Li, Z.
    Zhao, S.
    Diao, H.
    Liaw, P. K.
    Meyers, M. A.
    SCIENTIFIC REPORTS, 2017, 7
  • [36] High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure
    Z. Li
    S. Zhao
    H. Diao
    P. K. Liaw
    M. A. Meyers
    Scientific Reports, 7
  • [37] Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy
    Gangireddy, Sindhura
    Gwalani, Bharat
    Liu, Kaimiao
    Banerjee, Rajarshi
    Mishra, Rajiv S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 734 : 42 - 50
  • [38] Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy
    Shun, Tao-Tsung
    Du, Yu-Chin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) : 157 - 160
  • [39] Effects of microstructures on dynamic deformation and spallation damage of high-entropy alloy Al0.3CoCrFeNi under plate impact loading
    Tang, W. Y.
    Bian, Y. L.
    Cai, Y.
    Zhao, X. J.
    Zhang, N. B.
    Lu, L.
    Luo, S. N.
    MATERIALS CHARACTERIZATION, 2024, 216
  • [40] Orientation and temperature dependence of a planar slip and twinning in single crystals of Al0.3CoCrFeNi high-entropy alloy
    Kireeva, I., V
    Chumlyakov, Yu, I
    Pobedennaya, Z., V
    Vyrodova, A. V.
    Kuksgauzen, I., V
    Kuksgauzen, D. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 737 : 47 - 60