Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation

被引:95
|
作者
Guo, Qingwei [1 ]
Hou, Hua [1 ,3 ]
Pan, Yue [1 ,3 ]
Pei, Xiaolong [1 ]
Song, Zhuo [1 ]
Liaw, Peter K. [5 ]
Zhao, Yuhong [1 ,2 ,4 ]
机构
[1] North Univ China, Sch Mat Sci & Engn, Collaborat Innovat Ctr, Minist Educ & Shanxi Prov High Performance Al Mg A, Taiyuan 030051, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[4] Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA
关键词
High-entropy alloy; Nanoindentation; Hardening-softening; Molecular dynamics; Phase-field-crystal; INCIPIENT PLASTICITY; DEFORMATION; STRAIN; LOOP; CU;
D O I
10.1016/j.matdes.2023.112050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The competition and balance mechanism between work hardening resulting from the surge in disloca-tions and material softening caused by plastic deformation during contact loading in Al0.3CoCrFeNi high-entropy alloy is unclear. The structural transformation and strain localization of Al0.3CoCrFeNi high-entropy alloy during nanoindentation are investigated using molecular dynamics, and the hardening-softening mechanism is discussed. The simulations demonstrate that the prismatic dislocation loop with independent nucleation is discovered for the first time in the [111] orientation. Dislocation multiplication and cross-slip lead to an increase in indentation resistance, resulting in work hardening. Free dislocation slip and dislocation annihilation accommodate plastic strain will reduce indentation resistance, resulting in plastic softening. Twin boundaries can effectively block dislocation propagation, which contributes to hardening. However, twin boundaries cause a softening effect in the later stage of plastic deformation owing to two reasons: (1) the formation of steps and the partial slip where the slip plane and Burgers vector are parallel to the twin boundary, (2) steps and local damage zones in twin boundaries become new nucleation sites for dislocations. The phase-field-crystal method confirms that Al0.3CoCrFeNi high-entropy alloy has the highest hardness when the twin spacing is 2.467 nm.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy
    John, Rahul
    Karati, Anirudha
    Garlapati, Mohan Muralikrishna
    Vaidya, Mayur
    Bhattacharya, Rahul
    Fabijanic, Daniel
    Murty, B. S.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (23) : 14588 - 14598
  • [22] Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing
    Tang, Q. H.
    Huang, Y.
    Huang, Y. Y.
    Liao, X. Z.
    Langdon, T. G.
    Dai, P. Q.
    MATERIALS LETTERS, 2015, 151 : 126 - 129
  • [23] The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals
    I. V. Kireeva
    Yu. I. Chumlyakov
    Z. V. Pobedennaya
    A. V. Vyrodova
    I. V. Kuksgauzen
    V. V. Poklonov
    D. A. Kuksgauzen
    Technical Physics Letters, 2017, 43 : 615 - 618
  • [24] High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures
    Li, Dongyue
    Li, Chengxin
    Feng, Tao
    Zhang, Yidong
    Sha, Gang
    Lewandowski, John J.
    Liaw, Peter K.
    Zhang, Yong
    ACTA MATERIALIA, 2017, 123 : 285 - 294
  • [25] Structural Transformations upon Annealing of a Cold-Worked High-Entropy Al0.3CoCrFeNi Alloy
    Ivanov I.V.
    Emurlaev K.I.
    Kuper K.E.
    Safarova D.E.
    Bataev I.A.
    Steel in Translation, 2022, 52 (8) : 724 - 730
  • [26] Additive manufacturing of Al0.3CoCrFeNi high-entropy alloy by powder feeding laser melting deposition
    Peng, Haoping
    Xie, Siyao
    Niu, Pengda
    Zhang, Zhijian
    Yuan, Tiechui
    Ren, Zhiqiang
    Wang, Xiaoming
    Zhao, Yang
    Li, Ruidi
    Journal of Alloys and Compounds, 2021, 862
  • [27] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    Journal of Alloys and Compounds, 2022, 914
  • [28] The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals
    Kireeva, I. V.
    Chumlyakov, Yu. I.
    Pobedennaya, Z. V.
    Vyrodova, A. V.
    Kuksgauzen, I. V.
    Poklonov, V. V.
    Kuksgauzen, D. A.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (07) : 615 - 618
  • [29] Microstructure and Texture Evolution of Al0.3CoCrFeNi High-Entropy Alloy After Cold Rolling Deformation
    Hosseinifar, Amirhossein
    Dehghani, Kamran
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2024, 77 (06) : 1467 - 1479
  • [30] Structural Transformations upon Annealing of a Cold-Worked High-Entropy Al0.3CoCrFeNi Alloy
    Ivanov, I.V.
    Emurlaev, K.I.
    Kuper, K.E.
    Safarova, D.E.
    Bataev, I.A.
    Steel in Translation, 2022, 52 (08) : 724 - 730