TRANSPORT MODELS FOR WAVE PROPAGATION IN SCATTERING MEDIA WITH NONLINEAR ABSORPTION

被引:1
|
作者
Kraisler, Joseph [1 ]
Li, Wei [2 ]
Ren, Kui [1 ]
Schotland, John C. [3 ,4 ]
Zhong, Yimin [5 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[5] Auburn Univ, Dept Math & Stat, Auburn, AL 36830 USA
基金
美国国家科学基金会;
关键词
wave propagation; nonlinear media; nonlinear absorption; semilinear diffusion equation; semilinear radiative transport equation; inverse problem; RADIATIVE-TRANSFER; 2-PHOTON ABSORPTION; SCHRODINGER-EQUATION; MULTIPLE-SCATTERING; LIMIT; FLUORESCENCE; GENERATION;
D O I
10.1137/22M1533505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the propagation of high-frequency waves in highly scattering media where physical absorption of a nonlinear nature occurs. Using the classical tools of the Wigner transform and multiscale analysis, we derive semilinear radiative transport models for the phase-space intensity and the diffusive limits of such transport models. As an application, we consider an inverse problem for the semilinear transport equation, where we reconstruct the absorption coefficients of the equation from a functional of its solution. We obtain a uniqueness result on the inverse problem.
引用
收藏
页码:1677 / 1695
页数:19
相关论文
共 50 条
  • [31] Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials
    Wang, Kangpeng
    Ju, Yongfeng
    He, Jin
    Zhang, Long
    Chen, Yu
    Blau, Werner J.
    Wang, Jun
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (02)
  • [32] Experimental verification of wave propagation models for saturated media
    Butalia, TS
    Wolfe, WE
    Dreger, BA
    [J]. POROMECHANICS: A TRIBUTE TO MAURICE A. BIOT, 1998, : 185 - 190
  • [33] WAVE-PROPAGATION IN PHYSICAL MODELS OF MICROMORPHIC MEDIA
    DRESEN, L
    KOZAK, J
    SPICAK, A
    WANIEK, L
    TEISSEYRE, R
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 1984, 28 (03) : 272 - 285
  • [34] Asymptotical models for wave propagation in media including slots
    Joly, P
    Lenoir, M
    Tordeux, S
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 169 - 173
  • [35] Spectral and scattering theory for wave propagation in perturbed stratified media
    Boutet, de Monvel-Berthier, Anne
    Manda, Dragos
    [J]. Journal of Mathematical Analysis and Applications, 1995, 191 (01)
  • [36] THEORY AND APPLICATION OF WAVE-PROPAGATION AND SCATTERING IN RANDOM MEDIA
    ISHIMARU, A
    [J]. PROCEEDINGS OF THE IEEE, 1977, 65 (07) : 1030 - 1061
  • [37] PROPAGATION OF WAVE PACKETS IN INHOMOGENEOUS ANISOTROPIC MEDIA WITH MODERATE ABSORPTION
    SUCHY, K
    [J]. PROCEEDINGS OF THE IEEE, 1974, 62 (11) : 1571 - 1577
  • [38] VISCOACOUSTIC WAVE-PROPAGATION IN 2-D RANDOM-MEDIA AND SEPARATION OF ABSORPTION AND SCATTERING ATTENUATION
    KNEIB, G
    SHAPIRO, SA
    [J]. GEOPHYSICS, 1995, 60 (02) : 459 - 467
  • [39] An effective Bloch wave theory for light propagation in nonlinear media
    Wang, ZL
    Liu, XJ
    Wu, J
    Ming, NB
    [J]. PHYSICS LETTERS A, 1998, 248 (2-4) : 263 - 266
  • [40] FDTD analysis of wave propagation in nonlinear absorbing and gain media
    Nagra, AS
    York, RA
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1998, 46 (03) : 334 - 340