TRANSPORT MODELS FOR WAVE PROPAGATION IN SCATTERING MEDIA WITH NONLINEAR ABSORPTION

被引:1
|
作者
Kraisler, Joseph [1 ]
Li, Wei [2 ]
Ren, Kui [1 ]
Schotland, John C. [3 ,4 ]
Zhong, Yimin [5 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[5] Auburn Univ, Dept Math & Stat, Auburn, AL 36830 USA
基金
美国国家科学基金会;
关键词
wave propagation; nonlinear media; nonlinear absorption; semilinear diffusion equation; semilinear radiative transport equation; inverse problem; RADIATIVE-TRANSFER; 2-PHOTON ABSORPTION; SCHRODINGER-EQUATION; MULTIPLE-SCATTERING; LIMIT; FLUORESCENCE; GENERATION;
D O I
10.1137/22M1533505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the propagation of high-frequency waves in highly scattering media where physical absorption of a nonlinear nature occurs. Using the classical tools of the Wigner transform and multiscale analysis, we derive semilinear radiative transport models for the phase-space intensity and the diffusive limits of such transport models. As an application, we consider an inverse problem for the semilinear transport equation, where we reconstruct the absorption coefficients of the equation from a functional of its solution. We obtain a uniqueness result on the inverse problem.
引用
收藏
页码:1677 / 1695
页数:19
相关论文
共 50 条