Predicting cardiovascular disease risk from gut microbial genes

被引:0
|
作者
Claesen, Jan [1 ,2 ,3 ]
Brown, J. Mark [2 ,3 ,4 ]
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Cardiovasc & Metab Sci, Cleveland, OH 44106 USA
[2] Cleveland Clin, Ctr Microbiome & Human Hlth, Lerner Res Inst, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Cleveland Clin, Lerner Coll Med, Dept Mol Med, Cleveland, OH 44106 USA
[4] Cleveland Clin, Lerner Res Inst, Dept Canc Biol, Cleveland, OH 44106 USA
来源
MBIO | 2023年 / 14卷 / 06期
关键词
microbiome; metabolism; cardiovascular disease;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Gut bacteria-driven production of trimethylamine (TMA) is strongly associated with cardiovascular disease. Borton et al. (mBio 14:e01511-23, 2023, https://doi.org/10.1128/mbio.01511-23) introduce the Methylated Amine Gene Inventory of Catabolism database (MAGICdb), comprehensively cataloging pathways involved in TMA metabolism. By integrating transcriptomics, proteomics, and metagenomic data, this work identifies key bacterial players in the process and can link gut microbial gene content to fecal TMA concentrations. This work shows that methylated amine metabolism is a keystone microbiome process carried out by a small proportion of the community. Proatherogenic pathways are more widely distributed among the gut microbiota, and new TMA-reducing genera were identified that might offer new potential for probiotic strategies or targeted microbiome interventions. Remarkably, MAGICdb's power to predict cardiovascular disease risk matches an approach using more traditional lipid risk factors. This open source will be a valuable tool for the community to link methylated amine metabolism to gut microbiome-related human health conditions.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Predicting Atherosclerotic Cardiovascular Disease (ASCVD) Risk in Veterans with Diabetes
    Raghavan, Sridharan
    Ho, Yuk-Lam
    Posner, Daniel
    Vassy, Jason L.
    Gagnon, David R.
    Phillips, Lawrence S.
    Wilson, Peter W.
    DIABETES, 2019, 68
  • [42] Predicting cardiovascular disease risk using photoplethysmography and deep learning
    Weng, Wei-Hung
    Baur, Sebastien
    Daswani, Mayank
    Chen, Christina
    Harrell, Lauren
    Kakarmath, Sujay
    Jabara, Mariam
    Behsaz, Babak
    Mclean, Cory Y.
    Matias, Yossi
    Corrado, Greg S.
    Shetty, Shravya
    Prabhakara, Shruthi
    Liu, Yun
    Danaei, Goodarz
    Ardila, Diego
    PLOS GLOBAL PUBLIC HEALTH, 2024, 4 (06):
  • [43] Seeking a Unique Lipid Signature Predicting Cardiovascular Disease Risk
    Brown, J. Mark
    Hazen, Stanley L.
    CIRCULATION, 2014, 129 (18) : 1799 - 1803
  • [44] PREDICTING DEMENTIA: COMPARISON OF DEMENTIA AND CARDIOVASCULAR DISEASE RISK SCORES
    Singh-Manoux, A.
    GERONTOLOGIST, 2015, 55 : 150 - 150
  • [45] Predicting risk of fatal cardiovascular disease and sudden death in hypertension
    Fagard, Robert H.
    JOURNAL OF HYPERTENSION, 2017, 35 (11) : 2165 - 2167
  • [46] Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
    Alexandros C. Dimopoulos
    Mara Nikolaidou
    Francisco Félix Caballero
    Worrawat Engchuan
    Albert Sanchez-Niubo
    Holger Arndt
    José Luis Ayuso-Mateos
    Josep Maria Haro
    Somnath Chatterji
    Ekavi N. Georgousopoulou
    Christos Pitsavos
    Demosthenes B. Panagiotakos
    BMC Medical Research Methodology, 18
  • [47] Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
    Dimopoulos, Alexandros C.
    Nikolaidou, Mara
    Felix Caballero, Francisco
    Engchuan, Worrawat
    Sanchez-Niubo, Albert
    Arndt, Holger
    Luis Ayuso-Mateos, Jose
    Maria Haro, Josep
    Chatterji, Somnath
    Georgousopoulou, Ekavi N.
    Pitsavos, Christos
    Panagiotakos, Demosthenes B.
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [48] A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors
    Nemet, Ina
    Saha, Prasenjit Prasad
    Gupta, Nilaksh
    Zhu, Weifei
    Romano, Kymberleigh A.
    Skye, Sarah M.
    Cajka, Tomas
    Mohan, Maradumane L.
    Li, Lin
    Wu, Yuping
    Funabashi, Masanori
    Ramer-Tait, Amanda E.
    Prasad, Sathyamangla Venkata Naga
    Fiehn, Oliver
    Rey, Federico E.
    Tang, W. H. Wilson
    Fischbach, Michael A.
    DiDonato, Joseph A.
    Hazen, Stanley L.
    CELL, 2020, 180 (05) : 862 - +
  • [49] Proportional changes in the gut microbiome: a risk factor for cardiovascular disease and dementia?
    Saji, Naoki
    Hisada, Takayoshi
    Tsuduki, Tsuyoshi
    Niida, Shumpei
    Toba, Kenji
    Sakurai, Takashi
    HYPERTENSION RESEARCH, 2019, 42 (07) : 1090 - 1091
  • [50] Proportional changes in the gut microbiome: a risk factor for cardiovascular disease and dementia?
    Naoki Saji
    Takayoshi Hisada
    Tsuyoshi Tsuduki
    Shumpei Niida
    Kenji Toba
    Takashi Sakurai
    Hypertension Research, 2019, 42 : 1090 - 1091