Non-differentiability of Feynman paths

被引:0
|
作者
Muldowney, Pat [1 ]
机构
[1] Ulster Univ, Northland Rd, Derry BT48 7JL, North Ireland
关键词
Feynman path integral; quantum mechanics; Brownian motion; Kurzweil-Henstock integration;
D O I
10.21136/CMJ.2024.0493-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known mathematical property of the particle paths of Brownian motion is that such paths are, with probability one, everywhere continuous and nowhere differentiable. R. Feynman (1965) and elsewhere asserted without proof that an analogous property holds for the sample paths (or possible paths) of a non-relativistic quantum mechanical particle to which a conservative force is applied. Using the non-absolute integration theory of Kurzweil and Henstock, this article provides an introductory proof of Feynman's assertion.
引用
收藏
页码:123 / 139
页数:17
相关论文
共 50 条
  • [1] Non-differentiability and fractional differentiability on timescales
    Nategh M.
    Neamaty A.
    Agheli B.
    [J]. Arabian Journal of Mathematics, 2018, 7 (2) : 147 - 158
  • [2] Points of non-differentiability of convex functions
    Siksek, S
    El Sedy, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 725 - 728
  • [3] On the non-differentiability of fuzzy logic systems
    Dadone, P
    VanLandingham, HF
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2703 - 2708
  • [4] AN EXAMPLE OF NON-DIFFERENTIABILITY IN GEOMETRY OF THE TRIANGLE
    Dixmier, Jacques
    Kahane, Jean-Pierre
    Nicolas, Jean-Louis
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (3-4): : 369 - 428
  • [5] Non-differentiability points of Cantor functions
    Li, Wenxia
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 140 - 151
  • [6] Non-differentiability of Alpha Function at the Boundary of Flat
    Zhang, Jian Lu
    Zhou, Min
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1341 - 1352
  • [7] DIFFERENTIABILITY AND NON-DIFFERENTIABILITY POINTS OF THE MINKOWSKI QUESTION MARK FUNCTION
    Baek, In-Soo
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04): : 811 - 817
  • [8] NON-DIFFERENTIABILITY OF ABSOLUTE PROBABILITIES OF MARKOV CHAINS
    OREY, S
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1962, 13 (52): : 252 - &
  • [9] NON-DIFFERENTIABILITY OF THE CONVOLUTION OF DIFFERENTIABLE REAL FUNCTIONS
    Ciesielski, Krzysztof C.
    Jimenez-Rodriguez, Pablo
    Munoz-Fernandez, Gustavo A.
    Seoane-Sepulveda, Juan B.
    [J]. REAL ANALYSIS EXCHANGE, 2020, 45 (02) : 327 - 338
  • [10] Interferential Behaviors in Nanostructures via Non-Differentiability
    Casian-Botez, Irinel
    Vrajitoriu, Lucia
    Rusu, Cristina
    Agop, Maricel
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (08) : 1483 - 1489