DIFFERENTIABILITY AND NON-DIFFERENTIABILITY POINTS OF THE MINKOWSKI QUESTION MARK FUNCTION

被引:0
|
作者
Baek, In-Soo [1 ]
机构
[1] Busan Univ Foreign Studies, Dept Math, Busan 46234, South Korea
来源
关键词
Minkowski question mark function; continued fraction;
D O I
10.4134/CKMS.c150248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the periodic continued fraction, we give concrete examples of the points at which the derivatives of the Minkowski question mark function does not exist. We also give examples of the differentiability points which show that recent apparently independent results are consistent and closely related.
引用
收藏
页码:811 / 817
页数:7
相关论文
共 50 条
  • [1] Fractal analysis for sets of non-differentiability of Minkowski's question mark function
    Kesseboehmer, Marc
    Stratmann, Bernd O.
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (09) : 2663 - 2686
  • [2] Differentiability of the Minkowski question mark function
    Dushistova, Anna A.
    Kan, Igor D.
    Moshchevitin, Nikolay G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 774 - 794
  • [3] Points of non-differentiability of convex functions
    Siksek, S
    El Sedy, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 725 - 728
  • [4] Non-differentiability and fractional differentiability on timescales
    Nategh M.
    Neamaty A.
    Agheli B.
    [J]. Arabian Journal of Mathematics, 2018, 7 (2) : 147 - 158
  • [5] Non-differentiability points of Cantor functions
    Li, Wenxia
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 140 - 151
  • [6] Dimensions of non-differentiability points of Cantor functions
    Yao, Yuanyuan
    Zhang, Yunxiu
    Li, Wenxia
    [J]. STUDIA MATHEMATICA, 2009, 195 (02) : 113 - 125
  • [7] Non-differentiability of Alpha Function at the Boundary of Flat
    Zhang, Jian Lu
    Zhou, Min
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1341 - 1352
  • [8] Non-differentiability of Alpha Function at the Boundary of Flat
    Jian Lu ZHANG
    Min ZHOU
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (08) : 1341 - 1352
  • [9] Non-differentiability of Feynman paths
    Muldowney, Pat
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024,
  • [10] Non-differentiability of alpha function at the boundary of flat
    Jian Lu Zhang
    Min Zhou
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 1341 - 1352