Interferential Behaviors in Nanostructures via Non-Differentiability

被引:0
|
作者
Casian-Botez, Irinel [1 ]
Vrajitoriu, Lucia [2 ]
Rusu, Cristina [2 ]
Agop, Maricel [3 ,4 ]
机构
[1] Gh Asachi Tech Univ Iasi, Dept Elect Telecommun & Informat Tehnol, Iasi 700506, Romania
[2] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[3] Univ Sci & Technol, Lasers Atoms & Mol Phys Lab, F-59655 Lille, France
[4] Gh Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
关键词
Complex Fluid; Non-Differentiability; Fractals; Scale-Relativity Theory;
D O I
10.1166/jctn.2015.3918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present paper proposes a new approach for the analysis of dynamics in nanostructures. The dynamics of nanostructure quasiparticles take place on continuous but non-differentiable curves. This idea is the starting point of our paper. Consequently, standard properties of nanostructures such as quasiparticles generation through self-structuring, interferential capacities through self-similar solutions of Kirchhoff type equations, etc. are controlled through non-differentiability of motion curves.
引用
收藏
页码:1483 / 1489
页数:7
相关论文
共 50 条
  • [1] Order Disorder Transition in Nanostructures via Non-Differentiability
    Casian-Botez, I.
    Agop, M.
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (08) : 1746 - 1755
  • [2] HYSTERETIC TYPE BEHAVIORS OF THE COMPLEX FLUIDS VIA NON-DIFFERENTIABILITY
    Timofte, Daniel
    Ochiuz, Lacramioara
    Eva, Lucian
    Moraru, Evelina
    Stana, Bogdan
    Agop, Maricel
    Vasincu, Decebal
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (04): : 331 - 337
  • [3] Non-differentiability and fractional differentiability on timescales
    Nategh M.
    Neamaty A.
    Agheli B.
    [J]. Arabian Journal of Mathematics, 2018, 7 (2) : 147 - 158
  • [4] Non-differentiability of Feynman paths
    Muldowney, Pat
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024,
  • [5] FLOW DYNAMICS REGIMES VIA NON-DIFFERENTIABILITY IN COMPLEX FLUIDS
    Axinte, Ciprian Iulian
    Baciu, Constantin
    Volovat, Simona
    Tesloianu, Dan
    Borsos, Zoltan
    Baciu, Anca
    Agop, Maricel
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (02): : 233 - 242
  • [6] Points of non-differentiability of convex functions
    Siksek, S
    El Sedy, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 725 - 728
  • [7] On the non-differentiability of fuzzy logic systems
    Dadone, P
    VanLandingham, HF
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2703 - 2708
  • [8] AN EXAMPLE OF NON-DIFFERENTIABILITY IN GEOMETRY OF THE TRIANGLE
    Dixmier, Jacques
    Kahane, Jean-Pierre
    Nicolas, Jean-Louis
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (3-4): : 369 - 428
  • [9] Non-differentiability points of Cantor functions
    Li, Wenxia
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 140 - 151
  • [10] Non-differentiability of Alpha Function at the Boundary of Flat
    Zhang, Jian Lu
    Zhou, Min
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1341 - 1352