Topological "Shape" in Micellar Dynamics

被引:0
|
作者
Peters, Thomas J. [1 ]
Jordan, Kirk E. [2 ]
Li, Ji [1 ]
Gardner, Kirk [1 ]
Conchuir, Breanndan O. [3 ]
Swope, William C. [4 ]
Vassiliadis, Vassilis [5 ]
Johnston, Michael A. [5 ]
Zaffetti, Peter [1 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, 371 Fairfield Way, Storrs, CT 06269 USA
[2] IBM Res, Cambridge, MA 02141 USA
[3] IBM Res Europe, Daresbury WA4 4AD, England
[4] IBM Res, San Jose, CA 95120 USA
[5] IBM Res Europe, Dublin D15 HN66 15, Ireland
来源
ACS OMEGA | 2024年 / 9卷 / 14期
关键词
D O I
10.1021/acsomega.3c09754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For micelles, "shape" is prominent in rheological computations of fluid flow, but this "shape" is often expressed too informally to be useful for rigorous analyses. We formalize topological "shape equivalence" of micelles, both globally and locally, to enable visualization of computational fluid dynamics. Although topological methods in visualization provide significant insights into fluid flows, this opportunity has been limited by the known difficulties in creating representative geometry. We present an agile geometric algorithm to represent the micellar shape for input into fluid flow visualizations. We show that worm-like and cylindrical micelles have formally equivalent shapes, but that visualization accentuates unexplored differences. This global-local paradigm is extensible beyond micelles.
引用
收藏
页码:16084 / 16088
页数:5
相关论文
共 50 条
  • [41] Topological dynamics on nets
    Farmaki, Vassiliki
    Karageorgos, Dimitris
    Koutsogiannis, Andreas
    Mitropoulos, Andreas
    TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 414 - 431
  • [42] COCYCLES IN TOPOLOGICAL DYNAMICS
    ELLIS, R
    TOPOLOGY, 1978, 17 (02) : 111 - 130
  • [43] Noncommutative topological dynamics
    Rainone, Timothy
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 903 - 923
  • [44] DYNAMICS OF FLUORESCENCE QUENCHING IN MICELLAR SYSTEMS
    INFELTA, PP
    GRATZEL, M
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (08): : 5280 - 5282
  • [45] STABILITY IN TOPOLOGICAL DYNAMICS
    URA, T
    KIMURA, I
    PROCEEDINGS OF THE JAPAN ACADEMY, 1964, 40 (09): : 703 - &
  • [46] TOPOLOGICAL DYNAMICS ON NILMANIFOLDS
    AUSLANDER, L
    MARKUS, L
    HAHN, F
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (03) : 298 - &
  • [47] Hyperconvergence in topological dynamics
    Souza, Josiney A.
    Alves, Richard W. M.
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (02): : 357 - 387
  • [48] Genericity in topological dynamics
    Hochman, Michael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 125 - 165
  • [49] Topological dynamics on hyperspaces
    Sharma, Puneet
    Nagar, Anima
    APPLIED GENERAL TOPOLOGY, 2010, 11 (01): : 1 - 19
  • [50] RIGIDITY IN TOPOLOGICAL DYNAMICS
    GLASNER, S
    MAON, D
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 : 309 - 320