Topological "Shape" in Micellar Dynamics

被引:0
|
作者
Peters, Thomas J. [1 ]
Jordan, Kirk E. [2 ]
Li, Ji [1 ]
Gardner, Kirk [1 ]
Conchuir, Breanndan O. [3 ]
Swope, William C. [4 ]
Vassiliadis, Vassilis [5 ]
Johnston, Michael A. [5 ]
Zaffetti, Peter [1 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, 371 Fairfield Way, Storrs, CT 06269 USA
[2] IBM Res, Cambridge, MA 02141 USA
[3] IBM Res Europe, Daresbury WA4 4AD, England
[4] IBM Res, San Jose, CA 95120 USA
[5] IBM Res Europe, Dublin D15 HN66 15, Ireland
来源
ACS OMEGA | 2024年 / 9卷 / 14期
关键词
D O I
10.1021/acsomega.3c09754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For micelles, "shape" is prominent in rheological computations of fluid flow, but this "shape" is often expressed too informally to be useful for rigorous analyses. We formalize topological "shape equivalence" of micelles, both globally and locally, to enable visualization of computational fluid dynamics. Although topological methods in visualization provide significant insights into fluid flows, this opportunity has been limited by the known difficulties in creating representative geometry. We present an agile geometric algorithm to represent the micellar shape for input into fluid flow visualizations. We show that worm-like and cylindrical micelles have formally equivalent shapes, but that visualization accentuates unexplored differences. This global-local paradigm is extensible beyond micelles.
引用
收藏
页码:16084 / 16088
页数:5
相关论文
共 50 条
  • [31] TOPOLOGICAL DYNAMICS IN NEUROBIOLOGY
    GUREL, O
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1973, 6 (04) : 165 - 179
  • [32] DYNAMICS OF CONCENTRATION FLUCTUATIONS FOR A MICELLAR SOLUTION
    HAMANO, K
    SATO, T
    KOYAMA, T
    KUWAHARA, N
    PHYSICAL REVIEW LETTERS, 1985, 55 (14) : 1472 - 1475
  • [33] Monomer Dynamics in SDS Micellar Solution
    Sharma, V. K.
    Verma, Gunjan
    Gautam, S.
    Hassan, P. A.
    Mitra, S.
    Mukhopadhyay, R.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (1-2): : 253 - 261
  • [34] STABILITY IN TOPOLOGICAL DYNAMICS
    ENGLAND, JW
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (03) : 479 - &
  • [35] ASYMPTOTICITY IN TOPOLOGICAL DYNAMICS
    BAUM, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (02) : 171 - 172
  • [36] DEFINABLE TOPOLOGICAL DYNAMICS
    Krupinski, Krzysztof
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (03) : 1080 - 1105
  • [37] ASYMPTOTICITY IN TOPOLOGICAL DYNAMICS
    BAUM, JD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 77 (NOV) : 506 - 519
  • [38] Noncommutative topological dynamics
    Ramos, CC
    Martins, N
    Severino, R
    Ramos, JS
    CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 15 - 23
  • [39] Hyperconvergence in topological dynamics
    Josiney A. Souza
    Richard W. M. Alves
    Monatshefte für Mathematik, 2021, 196 : 357 - 387
  • [40] Topological approach to dynamics
    Richard, M.J.
    International Journal of Mechanical Engineering Education, 1989, 17 (03) : 187 - 195